BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6883871)

  • 1. Rigidity of pure lag-screw fixation as a function of screw inclination in an in vitro spiral osteotomy.
    Johner R; Joerger K; Cordey J; Perren SM
    Clin Orthop Relat Res; 1983 Sep; (178):74-9. PubMed ID: 6883871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental spiral fractures. An in vitro biomechanical comparison of lag-screw fixation to plate fixation.
    Cox LG; Dahners LE; Gilbert JA
    Clin Orthop Relat Res; 1989 Jun; (243):189-94. PubMed ID: 2721062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biomechanical studies of the role of the interfragmentary traction screw in plate osteosynthesis exemplified by a short oblique tibial shaft fracture].
    Hopf T; Harnroongroi T
    Aktuelle Traumatol; 1986 Apr; 16(2):60-6. PubMed ID: 2871713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro comparison of lagged and nonlagged screw fixation of metacarpal fractures in cadavers.
    Nicklin S; Ingram S; Gianoutsos MP; Walsh WR
    J Hand Surg Am; 2008 Dec; 33(10):1732-6. PubMed ID: 19084171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of different osteosynthesis configurations with locking compression plates (LCP) on stability and fracture healing after an oblique 45° angle osteotomy.
    Plecko M; Lagerpusch N; Pegel B; Andermatt D; Frigg R; Koch R; Sidler M; Kronen P; Klein K; Nuss K; Gedet P; Bürki A; Ferguson SJ; Stoeckle U; Auer JA; von Rechenberg B
    Injury; 2012 Jul; 43(7):1041-51. PubMed ID: 22284334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical stability of different fixation constructs for ORIF of radial neck fractures.
    Capo JT; Svach D; Ahsgar J; Orillaza NS; Sabatino CT
    Orthopedics; 2008 Oct; 31(10):. PubMed ID: 19226014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of divergent screw placement on the initial strength of plate-to-bone fixation.
    Robert KQ; Chandler R; Baratta RV; Thomas KA; Harris MB
    J Trauma; 2003 Dec; 55(6):1139-44. PubMed ID: 14676661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Theoretical and experimental studies on the technology of external bone fracture stabilization].
    Egkher E
    Wien Klin Wochenschr Suppl; 1985; 158():1-19. PubMed ID: 3857791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fixation of HA-coated unicortical locking screws in a sheep gap model: a comparative biomechanical study.
    Moroni A; Pegreffi F; Hoang-Kim A; Tesei F; Giannini S; Wippermann B
    J Orthop Trauma; 2008 Jan; 22(1):37-42. PubMed ID: 18176163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison analysis of the operative treatment results of the femoral neck fractures using side-plate and compression screw and cannulated AO screws.
    Stiasny J; Dragan S; Kulej M; Martynkiewicz J; Płochowski J; Dragan SŁ
    Ortop Traumatol Rehabil; 2008; 10(4):350-61. PubMed ID: 18779768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suture versus screw fixation of displaced tibial eminence fractures: a biomechanical comparison.
    Bong MR; Romero A; Kubiak E; Iesaka K; Heywood CS; Kummer F; Rosen J; Jazrawi L
    Arthroscopy; 2005 Oct; 21(10):1172-6. PubMed ID: 16226643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal orientation of transfixation screws across oblique fractures lines.
    Schlicke LH; Panjabi MM; White AA
    Clin Orthop Relat Res; 1979 Sep; (143):271-7. PubMed ID: 509833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screw fixation of scaphoid fractures: a biomechanical assessment of screw length and screw augmentation.
    Dodds SD; Panjabi MM; Slade JF
    J Hand Surg Am; 2006 Mar; 31(3):405-13. PubMed ID: 16516734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of bioabsorbable versus metallic implant fixation for physeal and epiphyseal fractures of the distal tibia.
    Podeszwa DA; Wilson PL; Holland AR; Copley LA
    J Pediatr Orthop; 2008 Dec; 28(8):859-63. PubMed ID: 19034179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical comparison of polyaxial and uniaxial locking plate fixation in a proximal tibial gap model.
    Cullen AB; Curtiss S; Lee MA
    J Orthop Trauma; 2009 Aug; 23(7):507-13. PubMed ID: 19633460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical strength of the Peri-Loc proximal tibial plate: a comparison of all-locked versus hybrid locked/nonlocked screw configurations.
    Estes C; Rhee P; Shrader MW; Csavina K; Jacofsky MC; Jacofsky DJ
    J Orthop Trauma; 2008; 22(5):312-6. PubMed ID: 18448984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical comparison of bicortical versus unicortical screw placement of proximal tibia locking plates: a cadaveric model.
    Dougherty PJ; Kim DG; Meisterling S; Wybo C; Yeni Y
    J Orthop Trauma; 2008 Jul; 22(6):399-403. PubMed ID: 18594304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basicervical fractures of the proximal femur. A biomechanical study of 3 internal fixation techniques.
    Blair B; Koval KJ; Kummer F; Zuckerman JD
    Clin Orthop Relat Res; 1994 Sep; (306):256-63. PubMed ID: 8070205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fixation of the femoral condyles: a mechanical comparison of small and large fragment screw fixation.
    Khalafi A; Hazelwood S; Curtiss S; Wolinsky P
    J Trauma; 2008 Mar; 64(3):740-4. PubMed ID: 18332817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical comparison of four different fixation techniques for pediatric tibial eminence avulsion fractures.
    Mahar AT; Duncan D; Oka R; Lowry A; Gillingham B; Chambers H
    J Pediatr Orthop; 2008 Mar; 28(2):159-62. PubMed ID: 18388708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.