These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6884124)

  • 1. Testing the hydrocephalus shunt valve.
    Watts C; Keith HD
    Childs Brain; 1983; 10(4):217-28. PubMed ID: 6884124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydraulic and mechanical mis-matching of valve shunts used in the treatment of hydrocephalus: the need for a servo-valve shunt.
    Hakim S
    Dev Med Child Neurol; 1973 Oct; 15(5):646-53. PubMed ID: 4765233
    [No Abstract]   [Full Text] [Related]  

  • 3. Ball and spring or slit and core valve for hydrocephalus shunting?
    Serlo W; von Wendt L; Heikkinen ES; Heikkinen ER
    Ann Clin Res; 1986; 18 Suppl 47():103-6. PubMed ID: 3813463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel method for controlling cerebrospinal fluid flow and intracranial pressure by use of a tandem shunt valve system.
    Aihara Y; Kawamata T; Mitsuyama T; Hori T; Okada Y
    Pediatr Neurosurg; 2010; 46(1):12-8. PubMed ID: 20453558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nonlinear biomechanical model for evaluation of cerebrospinal fluid shunt systems.
    Hafez MA; Kempski O
    Childs Nerv Syst; 1994 Jul; 10(5):302-10; discussion 310-1. PubMed ID: 7954499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mechatronic valve in the management of hydrocephalus: methods and performance.
    Momani L; Al-Nuaimy W; Al-Jumaily M; Mallucci C
    Med Biol Eng Comput; 2011 Jan; 49(1):121-32. PubMed ID: 21174160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A physical framework for implementing virtual models of intracranial pressure and cerebrospinal fluid dynamics in hydrocephalus shunt testing.
    Venkataraman P; Browd SR; Lutz BR
    J Neurosurg Pediatr; 2016 Sep; 18(3):296-305. PubMed ID: 27203135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of anti-siphon devices in the treatment of pediatric hydrocephalus.
    Tokoro K; Chiba Y; Abe H; Tanaka N; Yamataki A; Kanno H
    Childs Nerv Syst; 1994 May; 10(4):236-8. PubMed ID: 7923233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of programmable shunt valves vs standard valves for communicating hydrocephalus of adults: a retrospective analysis of 407 patients.
    Ringel F; Schramm J; Meyer B
    Surg Neurol; 2005 Jan; 63(1):36-41; discussion 41. PubMed ID: 15639519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevention of ventricular catheter obstruction and slit ventricle syndrome by the prophylactic use of the Integra antisiphon device in shunt therapy for pediatric hypertensive hydrocephalus: a 25-year follow-up study.
    Gruber RW; Roehrig B
    J Neurosurg Pediatr; 2010 Jan; 5(1):4-16. PubMed ID: 20043731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro experiment for verification of the tandem shunt valve system: a novel method for treating hydrocephalus by flexibly controlling cerebrospinal fluid flow and intracranial pressure.
    Aihara Y; Shoji I; Okada Y
    J Neurosurg Pediatr; 2013 Jan; 11(1):43-7. PubMed ID: 23140212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Delta Valve: a physiologic shunt system.
    Watson DA
    Childs Nerv Syst; 1994 May; 10(4):224-30. PubMed ID: 7923231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The incidence and management of the slit ventricle syndrome.
    Serlo W; Saukkonen AL; Heikkinen E; von Wendt L
    Acta Neurochir (Wien); 1989; 99(3-4):113-6. PubMed ID: 2773680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus.
    Drake JM; Kestle JR; Milner R; Cinalli G; Boop F; Piatt J; Haines S; Schiff SJ; Cochrane DD; Steinbok P; MacNeil N
    Neurosurgery; 1998 Aug; 43(2):294-303; discussion 303-5. PubMed ID: 9696082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Snap-valve cerebral shunt design for intracranial pressure operation and ultrasound visualization.
    Mitchell SC; Grangard G; Kahouli W; Dalldorf C; Crain A; Lee E; Hamlin A; Feeney L; Johnstone H; Luke GP; Diamond SG; Bauer DF
    Med Eng Phys; 2019 Apr; 66():1-11. PubMed ID: 30827832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CSF outflow resistance as predictor of shunt function. A long-term study.
    Malm J; Lundkvist B; Eklund A; Koskinen LO; Kristensen B
    Acta Neurol Scand; 2004 Sep; 110(3):154-60. PubMed ID: 15285771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ventriculojugular shunt against the direction of blood flow. IV. Technical modifications and policy for treatment.
    el-Shafei I; Hafez MA
    Childs Nerv Syst; 1991 Aug; 7(4):197-204. PubMed ID: 1933915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shunt removal or replacement based on intraventricular infusion tests.
    Lundar T
    Childs Nerv Syst; 1994 Jul; 10(5):337-9. PubMed ID: 7954504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of the anti-siphon device (ASD) on the function of various hydrocephalus drainage systems in the child].
    Gruber R; Glaser F
    Z Kinderchir; 1986 Dec; 41(6):327-34. PubMed ID: 3825299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracranial pressure monitoring using a programmable pressure valve and a telemetric intracranial pressure sensor in a case of slit ventricle syndrome after multiple shunt revisions.
    Kamiryo T; Fujii Y; Kusaka M; Kashiwagi S; Ito H
    Childs Nerv Syst; 1991 Aug; 7(4):233-4. PubMed ID: 1933922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.