These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 6885304)

  • 1. Metabolic production of a blue-green fluorophor in lenses of dark-adapted mice and its increase with age.
    Yu NT; Bando M; Kuck JF
    Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1157-61. PubMed ID: 6885304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red fluorescence in older and brunescent human lenses.
    Yu NT; Kuck JF; Askren CC
    Invest Ophthalmol Vis Sci; 1979 Dec; 18(12):1278-80. PubMed ID: 511469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan Raman/457.9-nm-excited fluorescence of intact guinea pig lenses in aging and ultraviolet light.
    Barron BC; Yu NT; Kuck JF
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):815-21. PubMed ID: 3570691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age dependence and distribution of green and blue fluorophores in human lens homogenates.
    Yappert MC; Lal S; Borchman D
    Invest Ophthalmol Vis Sci; 1992 Dec; 33(13):3555-60. PubMed ID: 1464501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated laser-scanning-microbeam fluorescence/Raman image analysis of human lens with multichannel detection: evidence for metabolic production of a green fluorophor.
    Yu NT; Cai MZ; Ho DJ; Kuck JF
    Proc Natl Acad Sci U S A; 1988 Jan; 85(1):103-6. PubMed ID: 3422407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of two metabolically related fluorophors in human lens measured by laser microprobe.
    Yu NT; Barron BC; Kuck JF
    Exp Eye Res; 1989 Aug; 49(2):189-94. PubMed ID: 2767167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of light deprivation on the mouse lens.
    Augusteyn RC
    Exp Eye Res; 1998 May; 66(5):669-74. PubMed ID: 9628812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonpigment components of the photochlorophyllide photoactive complex: studies of low-temperature blue-green fluorescence spectra.
    Belyaeva OB; Sundqvist C; Litvin FF
    Membr Cell Biol; 2000; 13(3):337-45. PubMed ID: 10768484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence intensity profile of human lens sections.
    Jacobs R; Krohn DL
    Invest Ophthalmol Vis Sci; 1981 Jan; 20(1):117-20. PubMed ID: 7451073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on singlet oxygen formation and UVA light-mediated photobleaching of the yellow chromophores in human lenses.
    Ortwerth BJ; Chemoganskiy V; Olesen PR
    Exp Eye Res; 2002 Feb; 74(2):217-29. PubMed ID: 11950232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence/Raman intensity ratio for monitoring the pathologic state of human lens.
    Yu NT; Bando M; Kuck JF
    Invest Ophthalmol Vis Sci; 1985 Jan; 26(1):97-101. PubMed ID: 3967960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The photochemical attachment of the O-glucoside of 3-hydroxykynurenine to alpha-crystallin: a model for lenticular aging.
    Dillon J; Skonieczna M; Mandal K; Paik D
    Photochem Photobiol; 1999 Feb; 69(2):248-53. PubMed ID: 10048317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of lens regeneration in adult newts, Triturus viridescens, between light and dark preadapted and non-preadapted animals.
    Chan F
    Anat Rec; 1982 Apr; 202(4):521-5. PubMed ID: 7072994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lenticular scattered and fluorescent light: biomicroscopic determination of their relative proportions.
    Pierscionek BK; Weale RA
    Exp Eye Res; 1997 Feb; 64(2):189-94. PubMed ID: 9176052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of aging on glutathione peroxidase-i knockout mice-resistance of the lens to oxidative stress.
    Spector A; Kuszak JR; Ma W; Wang RR
    Exp Eye Res; 2001 May; 72(5):533-45. PubMed ID: 11311045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman and fluorescent emission of the human lens. A new fluorophor.
    Kuck JF; Yu NT
    Exp Eye Res; 1978 Dec; 27(6):737-41. PubMed ID: 738374
    [No Abstract]   [Full Text] [Related]  

  • 17. Amyloid-like protein structure in mammalian ocular lenses.
    Frederikse PH
    Curr Eye Res; 2000 Jun; 20(6):462-8. PubMed ID: 10980658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of UVR-A on whole human lenses, supernatants of buffered human lens homogenates, and purified argpyrimidine and 3-OH-kynurenine.
    Kessel L; Kalinin S; Soroka V; Larsen M; Johansson LB
    Acta Ophthalmol Scand; 2005 Apr; 83(2):221-7. PubMed ID: 15799737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined elastic and Raman light scattering of human eye lenses.
    Yaroslavsky IV; Yaroslavsky AN; Otto C; Puppels GJ; Vrensen GF; Duindam H; Greve J
    Exp Eye Res; 1994 Oct; 59(4):393-9. PubMed ID: 7859814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted knockout of the mouse betaB2-crystallin gene (Crybb2) induces age-related cataract.
    Zhang J; Li J; Huang C; Xue L; Peng Y; Fu Q; Gao L; Zhang J; Li W
    Invest Ophthalmol Vis Sci; 2008 Dec; 49(12):5476-83. PubMed ID: 18719080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.