BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 6885307)

  • 1. Calcium-containing opacities in the human lens.
    Harding CV; Chylack LT; Susan SR; Lo WK; Bobrowski WF
    Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1194-202. PubMed ID: 6885307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elemental and ultrastructural analysis of specific human lens opacities.
    Harding CV; Chylack LT; Susan SR; Lo WK; Bobrowski WF
    Invest Ophthalmol Vis Sci; 1982 Jul; 23(1):1-13. PubMed ID: 7085211
    [No Abstract]   [Full Text] [Related]  

  • 3. Morphologic characteristics and chemical composition of Christmas tree cataract.
    Shun-Shin GA; Vrensen GF; Brown NP; Willekens B; Smeets MH; Bron AJ
    Invest Ophthalmol Vis Sci; 1993 Dec; 34(13):3489-96. PubMed ID: 8258504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium localization and ultrastructure of clear and pCMPS-treated rat lenses.
    Vrensen GF; Sanderson J; Willekens B; Duncan G
    Invest Ophthalmol Vis Sci; 1995 Oct; 36(11):2287-95. PubMed ID: 7558723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomicroscopy and scanning electron microscopy of early opacities in the aging human lens.
    Vrensen G; Willekens B
    Invest Ophthalmol Vis Sci; 1990 Aug; 31(8):1582-91. PubMed ID: 2387688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elemental distribution in frozen-hydrated rat lenses with galactose cataract.
    Koyama-Ito H
    Lens Eye Toxic Res; 1990; 7(3-4):577-91. PubMed ID: 2100179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Energy dispersive X-ray analysis of senile cataract].
    Xu JM
    Zhonghua Yan Ke Za Zhi; 1986 Sep; 22(5):261-3. PubMed ID: 3098521
    [No Abstract]   [Full Text] [Related]  

  • 8. Cholesterol, phospholipid, and protein changes in focal opacities in the human eye lens.
    Duindam JJ; Vrensen GF; Otto C; Greve J
    Invest Ophthalmol Vis Sci; 1998 Jan; 39(1):94-103. PubMed ID: 9430550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inexpensive stereoscopic CCRG camera for lens/cataract photography in vitro.
    Chylack LT; Tung WH
    Invest Ophthalmol Vis Sci; 1986 Jan; 27(1):118-22. PubMed ID: 3941032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and repair of cataract induced by ultraviolet radiation.
    Michael R
    Ophthalmic Res; 2000; 32 Suppl 1():ii-iii; 1-44. PubMed ID: 10817682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The efficiency of X-ray microanalysis in low-vacuum scanning electron microscope: deposition of calcium on the surface of implanted hydrogel intraocular lens (IOL).
    Sato S; Matsui H; Sasaki Y; Oharazawa H; Nishimura M; Adachi A; Nakazawa E; Takahashi H
    J Submicrosc Cytol Pathol; 2006 Apr; 38(1):1-4. PubMed ID: 17283961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholesterol content of focal opacities and multilamellar bodies in the human lens: filipin cytochemistry and freeze fracture.
    VanMarle J; Vrensen GF
    Ophthalmic Res; 2000; 32(6):285-91. PubMed ID: 11015040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology of age-related cuneiform cortical cataracts: the case for mechanical stress.
    Michael R; Barraquer RI; Willekens B; van Marle J; Vrensen GF
    Vision Res; 2008 Feb; 48(4):626-34. PubMed ID: 18221767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneity in ultrastructure and elemental composition of perinuclear lens retrodots.
    Vrensen GF; Willekens B; De Jong PT; Shun-Shin GA; Brown NP; Bron AJ
    Invest Ophthalmol Vis Sci; 1994 Jan; 35(1):199-206. PubMed ID: 8300347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elemental profiles in Emory mouse lens.
    Bagchi M; Emanuel K
    Lens Eye Toxic Res; 1991; 8(1):61-74. PubMed ID: 2049345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of MIP 26 in nuclear fiber cells from aged normal and age-related nuclear cataractous human lenses.
    Boyle DL; Takemoto LJ
    Exp Eye Res; 1999 Jan; 68(1):41-9. PubMed ID: 9986740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of lipid membranes from clear and cataractous human lenses.
    Borchman D; Lamba OP; Yappert MC
    Exp Eye Res; 1993 Aug; 57(2):199-208. PubMed ID: 8405186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elemental distribution in frozen-hydrated mouse lenses with hereditary cataract.
    Koyama-Ito H; Wada E
    Lens Eye Toxic Res; 1992; 9(1):55-65. PubMed ID: 1599907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Calcium content of cataract lenses in the human--relation of the calcium content to the form and extent using Scheimpflug camera-documented lens opacities].
    Jaeger W; Olbert D; Crusius A; Frey M
    Fortschr Ophthalmol; 1985; 82(4):377-81. PubMed ID: 4054788
    [No Abstract]   [Full Text] [Related]  

  • 20. Breakdown of interlocking domains may contribute to formation of membranous globules and lens opacity in ephrin-A5(-/-) mice.
    Biswas S; Son A; Yu Q; Zhou R; Lo WK
    Exp Eye Res; 2016 Apr; 145():130-139. PubMed ID: 26643403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.