These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 6885573)

  • 21. Use of the force-velocity test to determine the optimal braking force for a sprint exercise on a friction-loaded cycle ergometer.
    Linossier MT; Dormois D; Fouquet R; Geyssant A; Denis C
    Eur J Appl Physiol Occup Physiol; 1996; 74(5):420-7. PubMed ID: 8954289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of previous dynamic arm exercise on power output during repeated maximal sprint cycling.
    Bogdanis GC; Nevill ME; Lakomy HK
    J Sports Sci; 1994 Aug; 12(4):363-70. PubMed ID: 7932946
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists.
    Woolford SM; Withers RT; Craig NP; Bourdon PC; Stanef T; McKenzie I
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):285-91. PubMed ID: 10483797
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Relationship between Pedal Force and Crank Angular Velocity in Sprint Cycling.
    Bobbert MF; Casius LJ; Van Soest AJ
    Med Sci Sports Exerc; 2016 May; 48(5):869-78. PubMed ID: 26694841
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of an increasing versus constant crank rate on peak physiological responses during incremental arm crank ergometry.
    Price MJ; Bottoms L; Smith PM; Nicholettos A
    J Sports Sci; 2011 Feb; 29(3):263-9. PubMed ID: 21154011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isokinetic aerobic power output testing of the quadriceps muscle.
    Verstappen FT; Veldhuizen JW; Twellaar M; Drost MR; Kuipers H
    Int J Sports Med; 1998 Oct; 19(7):485-9. PubMed ID: 9839846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The measurement of maximal (anaerobic) power output on a cycle ergometer: a critical review.
    Driss T; Vandewalle H
    Biomed Res Int; 2013; 2013():589361. PubMed ID: 24073413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling.
    Farina D; Macaluso A; Ferguson RA; De Vito G
    J Appl Physiol (1985); 2004 Dec; 97(6):2035-41. PubMed ID: 15286050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isokinetic contractile properties of the quadriceps with relation to fiber type.
    Ivy JL; Withers RT; Brose G; Maxwell BD; Costill DL
    Eur J Appl Physiol Occup Physiol; 1981; 47(3):247-55. PubMed ID: 7198035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological responses to maximal effort wheelchair and arm crank ergometry.
    Glaser RM; Sawka MN; Brune MF; Wilde SW
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Jun; 48(6):1060-4. PubMed ID: 7380703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of crank length on joint-specific power during maximal cycling.
    Barratt PR; Korff T; Elmer SJ; Martin JC
    Med Sci Sports Exerc; 2011 Sep; 43(9):1689-97. PubMed ID: 21311357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurement of the power output during the acceleration phase of all-out arm cranking exercise.
    Vanderthommen M; Francaux M; Johnson D; Dewan M; Lewyckyj Y; Sturbois X
    Int J Sports Med; 1997 Nov; 18(8):600-6. PubMed ID: 9443592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Torque-velocity relationship during cycle ergometer sprints with and without toe clips.
    Capmal S; Vandewalle H
    Eur J Appl Physiol Occup Physiol; 1997; 76(4):375-9. PubMed ID: 9349655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal velocity for maximal power production in non-isokinetic cycling is related to muscle fibre type composition.
    Hautier CA; Linossier MT; Belli A; Lacour JR; Arsac LM
    Eur J Appl Physiol Occup Physiol; 1996; 74(1-2):114-8. PubMed ID: 8891509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bilateral pedaling asymmetry during a simulated 40-km cycling time-trial.
    Carpes FP; Rossato M; Faria IE; Bolli Mota C
    J Sports Med Phys Fitness; 2007 Mar; 47(1):51-7. PubMed ID: 17369798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of bilateral asymmetry in cycling using a commercial instrumented crank system and instrumented pedals.
    Bini RR; Hume PA
    Int J Sports Physiol Perform; 2014 Sep; 9(5):876-81. PubMed ID: 24509507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of maximal aerobic power during upper-body exercise.
    Sawka MN; Foley ME; Pimental NA; Toner MM; Pandolf KB
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Jan; 54(1):113-7. PubMed ID: 6826395
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of two pedalling rate conditions on mechanical output and physiological responses during all-out intermittent exercise.
    Dorel S; Bourdin M; Van Praagh E; Lacour JR; Hautier CA
    Eur J Appl Physiol; 2003 Apr; 89(2):157-65. PubMed ID: 12665979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship in humans between spontaneously chosen crank rate and power output during upper body exercise at different levels of intensity.
    Weissland T; Marais G; Robin H; Vanvelcenaher J; Pelayo P
    Eur J Appl Physiol Occup Physiol; 1999 Feb; 79(3):230-6. PubMed ID: 10048627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fatigue and optimal conditions for short-term work capacity.
    MacIntosh BR; Svedahl K; Kim M
    Eur J Appl Physiol; 2004 Aug; 92(4-5):369-75. PubMed ID: 15241693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.