BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6885841)

  • 21. Uptake of Cr3+ from aqueous solution by lignite-based humic acids.
    Arslan G; Pehlivan E
    Bioresour Technol; 2008 Nov; 99(16):7597-605. PubMed ID: 18358715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An ultrafiltration method for the removal of interfering agents and its application to the determination of free ammonia in solutions of oxystarch by the Berthelot reaction method.
    Killeen GF; Hynes MJ; Power RF; Walsh GA; Headon DR
    Anal Biochem; 1993 Dec; 215(2):284-91. PubMed ID: 8122791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption of cyanuric acid on activated carbon from aqueous solution: effect of carbon surface modification and thermodynamic characteristics.
    Pal S; Lee KH; Kim JU; Han SH; Song JM
    J Colloid Interface Sci; 2006 Nov; 303(1):39-48. PubMed ID: 16899252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth.
    Mohan D; Singh KP; Singh VK
    J Hazard Mater; 2006 Jul; 135(1-3):280-95. PubMed ID: 16442720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sorption of copper by chemically modified aspen wood fibers.
    Huang L; Ou Z; Boving TB; Tyson J; Xing B
    Chemosphere; 2009 Aug; 76(8):1056-61. PubMed ID: 19446861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative study of natural, formaldehyde-treated and copolymer-grafted orange peel for Pb(II) adsorption under batch and continuous mode.
    Lugo-Lugo V; Hernández-López S; Barrera-Díaz C; Ureña-Núñez F; Bilyeu B
    J Hazard Mater; 2009 Jan; 161(2-3):1255-64. PubMed ID: 18550277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Further studies with oxystarch.
    Giordano C; Esposito R; Pluvio M
    Kidney Int Suppl; 1976 Dec; (7):S266-8. PubMed ID: 1070544
    [No Abstract]   [Full Text] [Related]  

  • 28. Efficiency of succinylated-olive stone biosorbent on the removal of cadmium ions from aqueous solutions.
    Aziz A; Elandaloussi el H; Belhalfaoui B; Ouali MS; De Ménorval LC
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):192-8. PubMed ID: 19553093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption of dicarboxylic acids by clay minerals as examined by in situ ATR-FTIR and ex situ DRIFT.
    Kang S; Xing B
    Langmuir; 2007 Jun; 23(13):7024-31. PubMed ID: 17508766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorptive removal of arsenites by a nanocrystalline hybrid surfactant-akaganeite sorbent.
    Deliyanni EA; Nalbandian L; Matis KA
    J Colloid Interface Sci; 2006 Oct; 302(2):458-66. PubMed ID: 16920133
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production.
    Mohan D; Pittman CU; Bricka M; Smith F; Yancey B; Mohammad J; Steele PH; Alexandre-Franco MF; Gómez-Serrano V; Gong H
    J Colloid Interface Sci; 2007 Jun; 310(1):57-73. PubMed ID: 17331527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lead removal from aqueous solutions by a Tunisian smectitic clay.
    Chaari I; Fakhfakh E; Chakroun S; Bouzid J; Boujelben N; Feki M; Rocha F; Jamoussi F
    J Hazard Mater; 2008 Aug; 156(1-3):545-51. PubMed ID: 18243536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin.
    Dizge N; Keskinler B; Barlas H
    J Hazard Mater; 2009 Aug; 167(1-3):915-26. PubMed ID: 19231079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of uremic waste metabolites from the intestinal tract by encapsulated carbon and oxidized starch.
    Sparks RE; Mason NS; Meier PM; Litt MH; Lindan O
    Trans Am Soc Artif Intern Organs; 1971; 17():229-38. PubMed ID: 5158097
    [No Abstract]   [Full Text] [Related]  

  • 35. Cross-linked quaternary chitosan as an adsorbent for the removal of the reactive dye from aqueous solutions.
    Rosa S; Laranjeira MC; Riela HG; Fávere VT
    J Hazard Mater; 2008 Jun; 155(1-2):253-60. PubMed ID: 18180101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of Cu(II) ions on cotton boll.
    Ozsoy HD; Kumbur H
    J Hazard Mater; 2006 Aug; 136(3):911-6. PubMed ID: 16490303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull.
    Arami M; Limaee NY; Mahmoodi NM; Tabrizi NS
    J Hazard Mater; 2006 Jul; 135(1-3):171-9. PubMed ID: 16442216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ozonation of naphthalenesulphonic acid in the aqueous phase in the presence of basic activated carbons.
    Rivera-Utrilla J; Sánchez-Polo M
    Langmuir; 2004 Oct; 20(21):9217-22. PubMed ID: 15461509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal.
    Zhang G; Qu J; Liu H; Liu R; Wu R
    Water Res; 2007 May; 41(9):1921-8. PubMed ID: 17382991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of copper(II) ions from aqueous solution by modified bagasse.
    Jiang Y; Pang H; Liao B
    J Hazard Mater; 2009 May; 164(1):1-9. PubMed ID: 18790566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.