These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6886565)

  • 1. [24,25-3H]Cholesterol: presence of tritium at additional sites in the side chain.
    Rosenfeld RS; Paul I; Zumoff B
    J Lipid Res; 1983 Jun; 24(6):781-3. PubMed ID: 6886565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of [24,25-3H] cholesterol. Oxidation in man as a measure of bile acid formation.
    Rosenfeld RS; Bradlow HL; Levin J; Zumoff B
    J Lipid Res; 1978 Sep; 19(7):850-5. PubMed ID: 712244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bile acid production in human subjects: rate of oxidation of [24,25-3H]cholesterol compared to fecal bile acid excretion.
    Davidson NO; Bradlow HL; Ahrens EH; Rosenfeld RS; Schwartz CC
    J Lipid Res; 1986 Feb; 27(2):183-95. PubMed ID: 3958621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of [24, 25-3H]cholesterol: a new substrate for determining the rate of cholesterol side chain oxidation.
    Bentzen CL; Brendel K
    J Lipid Res; 1979 Jan; 20(1):134-9. PubMed ID: 438651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sterol synthesis: studies of the metabolism of 14 alpha-methyl-5 alpha-cholest-7-en-3 beta-ol.
    Chan JT; Spike TE; Trowbridge ST; Schroepfer GJ
    J Lipid Res; 1979 Nov; 20(8):1007-19. PubMed ID: 533823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of 3-monohydroxylated bile acids of different side chain length and configuration at C-3. Novel approach to the synthesis of 24-norlithocholic acid.
    Radomińska-Pyrek A; Huynh T; Lester R; St Pyrek J
    J Lipid Res; 1986 Jan; 27(1):102-13. PubMed ID: 3958607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vivo evaluation of the quantitative significance of several potential pathways to cholic and chenodeoxycholic acids from cholesterol in man.
    Swell L; Gustafsson J; Schwartz CC; Halloran LG; Danielsson H; Vlahcevic ZR
    J Lipid Res; 1980 May; 21(4):455-66. PubMed ID: 7381336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 7-Hydroxylation of 3-oxygenated C27-, C28-, and C29-steroids in rat liver 18,000 g supernate.
    Aringer L
    J Lipid Res; 1978 Nov; 19(8):933-44. PubMed ID: 731128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile synthesis of [3 alpha-3 H]beta -sitosterol.
    Dayal B; Salen G; Tint GS; Biswas C
    Steroids; 1983 Dec; 42(6):635-40. PubMed ID: 6680934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of 3,4-13C2-steroids.
    Yuan SS
    Steroids; 1982 Mar; 39(3):279-89. PubMed ID: 7090025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of C21 bile acids from plant sterols in the rat.
    Boberg KM; Lund E; Olund J; Björkhem I
    J Biol Chem; 1990 May; 265(14):7967-75. PubMed ID: 2335512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of 4-cholesten-3-one and 7 alpha-hydroxy-4-cholesten-3-one into cholestanol and bile acids in cerebrotendinous xanthomatosis.
    Salen G; Shefer S; Tint GS
    Gastroenterology; 1984 Aug; 87(2):276-83. PubMed ID: 6735073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The synthesis of cholesteryl alkyl ethers.
    Halperin G; Gatt S
    Steroids; 1980 Jan; 35(1):39-42. PubMed ID: 7376210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of [3 alpha-3H]vitamin D3 and 1 alpha,25-dihydroxy[1 beta-3H]vitamin D3.
    Ray R; Holick MF
    Methods Enzymol; 1997; 282():157-64. PubMed ID: 9330285
    [No Abstract]   [Full Text] [Related]  

  • 15. Side-chain oxidation of lipoprotein-bound [24,25-3H]cholesterol in the rat: comparison of HDL and LDL and implications for bile acid synthesis.
    Miller LK; Tiell ML; Paul I; Spaet TH; Rosenfeld RS
    J Lipid Res; 1982 Feb; 23(2):335-44. PubMed ID: 7077148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse relationship between plasma cholestanol concentrations and bile acid synthesis in sitosterolemia.
    Salen G; Batta AK; Tint GS; Shefer S; Ness GC
    J Lipid Res; 1994 Oct; 35(10):1878-87. PubMed ID: 7852865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of novel C21-bile acids from cholesterol in the rat. Structure identification of the major Di- and trihydroxylated species.
    Lund E; Boberg KM; Byström S; Olund J; Carlström K; Björkhem I
    J Biol Chem; 1991 Mar; 266(8):4929-37. PubMed ID: 2002039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inborn errors of bile acid metabolism.
    Clayton PT
    J Inherit Metab Dis; 1991; 14(4):478-96. PubMed ID: 1749214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Difference between cholic acid and chenodeoxycholic acid in dependence upon cholesterol of hepatic and plasmatic sources as the precursor in rats.
    Ayaki Y; Ogura Y; Kitayama S; Endo S; Ogura M
    Steroids; 1983 Apr; 41(4):509-20. PubMed ID: 6658889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of steroidal 5-en-3 beta-ols with Jones reagent in ether.
    Solaja BA; Milić DR; Dosen-Mićović LI
    Steroids; 1994 May; 59(5):330-4. PubMed ID: 8073446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.