These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 68866)

  • 1. On the volume conduction in human skeletal muscle: in situ measurements.
    Gath I; Stålberg E
    Electroencephalogr Clin Neurophysiol; 1977 Jul; 43(1):106-10. PubMed ID: 68866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The calculated radial decline of the extracellular action potential compared with in situ measurements in the human brachial biceps.
    Gath I; Stålberg E
    Electroencephalogr Clin Neurophysiol; 1978 May; 44(5):547-52. PubMed ID: 77760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial- and frequency-domain ring source models for the single-muscle fibre action potential.
    Henneberg K; Plonsey R
    Med Biol Eng Comput; 1994 Jan; 32(1):27-34. PubMed ID: 8182958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular potentials produced by a transition between an inactive and active regions of an excitable fibre.
    Dimitrov GV; Dimitrova NA
    Electromyogr Clin Neurophysiol; 1989; 29(5):265-71. PubMed ID: 2766990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic and macroscopic volume conduction in skeletal muscle tissue, applied to simulation of single-fibre action potentials.
    Albers BA; Rutten WL; Wallinga-de Jonge W; Boom HB
    Med Biol Eng Comput; 1988 Nov; 26(6):605-10. PubMed ID: 3256753
    [No Abstract]   [Full Text] [Related]  

  • 6. Nerve compound action potentials analysed with the simultaneously measured single fibre action potentials in humans.
    Schalow G; Zäch GA
    Electromyogr Clin Neurophysiol; 1994 Dec; 34(8):451-65. PubMed ID: 7882888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analysis of extracellular single muscle fibre action potential field--modelling results.
    Miller-Larsson A
    Biol Cybern; 1985; 51(4):271-84. PubMed ID: 3970987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The estimation of conduction velocity in human skeletal muscle in situ with surface electrodes.
    Nishizono H; Saito Y; Miyashita M
    Electroencephalogr Clin Neurophysiol; 1979 Jun; 46(6):659-64. PubMed ID: 87310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of single muscle fibre action potentials recorded at known distances.
    Albers BA; Put JH; Wallinga W; Wirtz P
    Electroencephalogr Clin Neurophysiol; 1989 Sep; 73(3):245-53. PubMed ID: 2475329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of the action potential of frog sartorius muscle.
    Adrian RH; Peachey LD
    J Physiol; 1973 Nov; 235(1):103-31. PubMed ID: 4778131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral and time domain characteristics of single muscle fibre action potentials during continuous activity extracted from model considerations.
    Radicheva N; Slavcheva G
    Biol Cybern; 1998 Nov; 79(5):427-35. PubMed ID: 9851022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of the amplitude of the single muscle fibre action potential to microscopic volume conduction parameters.
    Albers BA; Rutten WL; Wallinga-de Jonge W; Boom HB
    Med Biol Eng Comput; 1988 Nov; 26(6):611-6. PubMed ID: 3256754
    [No Abstract]   [Full Text] [Related]  

  • 13. A method for calculation the extracellular potentials from experimentally recorded intracellular potentials of a single muscle fibers.
    Trayanova N
    Acta Physiol Pharmacol Bulg; 1988; 14(2):83-91. PubMed ID: 3223294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electrophysiological study of chelonian skeletal muscle.
    Levine L
    J Physiol; 1966 Apr; 183(3):683-713. PubMed ID: 5919565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ measurement of the innervation ratio of motor units in human muscles.
    Gath I; Stålberg E
    Exp Brain Res; 1981; 43(3-4):377-82. PubMed ID: 7262230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local development of action potentials in slow muscle fibres after complete or partial denervation.
    Schalow G; Schmidt H
    Proc R Soc Lond B Biol Sci; 1979 Jan; 203(1153):445-57. PubMed ID: 34164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conduction velocities in amphibian skeletal muscle fibres exposed to hyperosmotic extracellular solutions.
    Chen Z; Hothi SS; Xu W; Huang CL
    J Muscle Res Cell Motil; 2007; 28(4-5):195-202. PubMed ID: 17891463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency domain modeling of volume conduction of single muscle fiber action potentials.
    Albers BA; Rutten WL; Wallinga-De Jonge W; Boom HB
    IEEE Trans Biomed Eng; 1988 May; 35(5):328-32. PubMed ID: 3397080
    [No Abstract]   [Full Text] [Related]  

  • 19. Analysis of motor conduction velocity in the human median nerve by computer simulation of compound muscle action potentials.
    Lee RG; Ashby P; White DG; Aguayo AJ
    Electroencephalogr Clin Neurophysiol; 1975 Sep; 39(3):225-37. PubMed ID: 50220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence between intra- and extracellular action potentials of isolated frog muscle fibres at different temperatures.
    Gerilovsky L; Radicheva N; Gydikov A
    Acta Physiol Pharmacol Bulg; 1988; 14(4):12-9. PubMed ID: 3245457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.