These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6886607)

  • 1. A contractile ring-like mechanism in wound healing and soluble factors affecting structural stability in the cortex of Xenopus eggs and oocytes.
    Merriam RW; Christensen K
    J Embryol Exp Morphol; 1983 Jun; 75():11-20. PubMed ID: 6886607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of a pigment-containing structure near the surface of Xenopus eggs which contracts in response to calcium.
    Merriam RW; Sauterer RA
    J Embryol Exp Morphol; 1983 Aug; 76():51-65. PubMed ID: 6415203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A 2-component cytoskeletal system as the basis of cortical contractility in clawed toad eggs].
    Riabova LV
    Ontogenez; 1995; 26(3):236-47. PubMed ID: 7666999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A two-component cytoskeletal system of Xenopus laevis egg cortex: concept of its contractility.
    Ryabova LV; Vassetzky SG
    Int J Dev Biol; 1997 Dec; 41(6):843-51. PubMed ID: 9449460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insensitivity to cytochalasin B of surface contractions keyed to cleavage in the Xenopus egg.
    Christensen K; Merriam RW
    J Embryol Exp Morphol; 1982 Dec; 72():143-51. PubMed ID: 6892157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of surface polarity in mouse eggs.
    Longo FJ; Chen DY
    Scan Electron Microsc; 1984; (Pt 2):703-16. PubMed ID: 6541369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of soluble myosin in cortical contractions of Xenopus eggs.
    Christensen K; Sauterer R; Merriam RW
    Nature; 1984 Jul 12-18; 310(5973):150-1. PubMed ID: 6738711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redistribution and increase in cortical inositol 1,4,5-trisphosphate receptors after meiotic maturation of the mouse oocyte.
    Mehlmann LM; Mikoshiba K; Kline D
    Dev Biol; 1996 Dec; 180(2):489-98. PubMed ID: 8954721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytokeratin intermediate filament organisation and dynamics in the vegetal cortex of living Xenopus laevis oocytes and eggs.
    Clarke EJ; Allan VJ
    Cell Motil Cytoskeleton; 2003 Sep; 56(1):13-26. PubMed ID: 12905528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The organization of the cortical layer of amphibian ova. 1. The ultrastructure of the cortex of the oocytes and ova of the clawed toad: the effect of divalent cations].
    Riabova LV
    Ontogenez; 1990; 21(3):286-91. PubMed ID: 2395590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro.
    Sun QY; Wu GM; Lai L; Park KW; Cabot R; Cheong HT; Day BN; Prather RS; Schatten H
    Reproduction; 2001 Jul; 122(1):155-63. PubMed ID: 11425340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of inducible contractile rings suggests a role for protein kinase C in embryonic cytokinesis and wound healing.
    Bement WM; Capco DG
    Cell Motil Cytoskeleton; 1991; 20(2):145-57. PubMed ID: 1751967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presence of inositol 1,4,5-trisphosphate receptor, calreticulin, and calsequestrin in eggs of sea urchins and Xenopus laevis.
    Parys JB; McPherson SM; Mathews L; Campbell KP; Longo FJ
    Dev Biol; 1994 Feb; 161(2):466-76. PubMed ID: 8313995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contractile responses at the surface of an amphibian egg.
    Gingell D
    J Embryol Exp Morphol; 1970 Jun; 23(3):583-609. PubMed ID: 4990699
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of calcium antagonists and calcium-buffered salines on wound healing in Xenopus early embryos.
    Stanisstreet M; Smedley MJ; Veltkamp CJ
    Cytobios; 1986; 46(184):25-35. PubMed ID: 3731877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium and wound healing in Xenopus early embryos.
    Stanisstreet M
    J Embryol Exp Morphol; 1982 Feb; 67():195-205. PubMed ID: 6806425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embryonic wound healing by apical contraction and ingression in Xenopus laevis.
    Davidson LA; Ezin AM; Keller R
    Cell Motil Cytoskeleton; 2002 Nov; 53(3):163-76. PubMed ID: 12211099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The permeability to cytochalasin B of the new unpigmented surface in the first cleavage furrow of the newt's egg.
    Selman GG; Jacob J; Perry MM
    J Embryol Exp Morphol; 1976 Oct; 36(2):321-41. PubMed ID: 1033983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wound healing ability of Xenopus laevis embryos. II. Morphological analysis of wound marginal epidermis.
    Yoshii Y; Matsuzaki T; Ishida H; Ihara S
    Dev Growth Differ; 2005 Oct; 47(8):563-72. PubMed ID: 16287487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell motility during wound healing in giant algal cells: contraction in detergent-permeabilized cell models of Ernodesmis.
    La Claire JW2nd
    Eur J Cell Biol; 1984 Mar; 33(2):180-9. PubMed ID: 6714240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.