These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 6887035)

  • 1. The influence of deformation of transformed erythrocytes during flow on the rate of oxygen release.
    Kon K; Maeda N; Shiga T
    J Physiol; 1983 Jun; 339():573-84. PubMed ID: 6887035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased viscosity of human erythrocyte suspension due to drug-induced spherostomatocytosis.
    Suda T; Maeda N; Shimizu D; Kamitsubo E; Shiga T
    Biorheology; 1982; 19(4):555-65. PubMed ID: 7126806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of erythrocyte shape on suspension viscosities.
    Reinhart WH; Singh-Marchetti M; Straub PW
    Eur J Clin Invest; 1992 Jan; 22(1):38-44. PubMed ID: 1559541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced oxygen release from erythrocytes by the acceleration-induced flow shift, observed in an oxygen-permeable narrow tube.
    Tateishi N; Suzuki Y; Shirai M; Cicha I; Maeda N
    J Biomech; 2002 Sep; 35(9):1241-51. PubMed ID: 12163313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micropipette aspiration of human erythrocytes induces echinocytes via membrane phospholipid translocation.
    Artmann GM; Sung KL; Horn T; Whittemore D; Norwich G; Chien S
    Biophys J; 1997 Mar; 72(3):1434-41. PubMed ID: 9138589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation of transforming red cells in various pH solutions.
    Nagasawa T
    Experientia; 1981; 37(9):977-8. PubMed ID: 7297661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheologic properties of erythrocytes in Duchenne muscular dystrophy.
    Tillmann W; Lenard HG; Wagner D; Dönges H; Schröter W
    Pediatr Res; 1979 Mar; 13(3):152-5. PubMed ID: 471567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic adhesion of erythrocytes to glass. Comparative study of the influence of serum in low concentrations.
    Kowalczyńska HM
    Arch Immunol Ther Exp (Warsz); 1977; 25(3):397-408. PubMed ID: 889429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape and volume changes in rat erythrocytes induced by surface-active alkyltrimethylammonium salts and sodium dodecyl sulphate.
    Isomaa B; Paatero G
    Biochim Biophys Acta; 1981 Oct; 647(2):211-22. PubMed ID: 7295726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of erythrocyte shape by a chemical increase in membrane shear stiffness.
    Haest CW; Fischer TM; Plasa G; Deuticke B
    Blood Cells; 1980; 6(3):539-53. PubMed ID: 7397401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape matters: the effect of red blood cell shape on perfusion of an artificial microvascular network.
    Piety NZ; Reinhart WH; Pourreau PH; Abidi R; Shevkoplyas SS
    Transfusion; 2016 Apr; 56(4):844-51. PubMed ID: 26711854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheological and kinetic dysfunctions of the cholesterol-loaded, human erythrocytes.
    Shiga T; Maeda N; Suda T; Kon K; Sekiya M; Oka S
    Biorheology; 1979; 16(4-5):363-9. PubMed ID: 534759
    [No Abstract]   [Full Text] [Related]  

  • 13. Hydrodynamics of confined membranes.
    Gov N; Zilman AG; Safran S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011104. PubMed ID: 15324039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of erythrocyte shape, plasma membrane fluidity and conformation of haemoglobin haemoporphyrin under the influence of long-term space flight.
    Grigoriev AI; Maksimov GV; Morukov BV; Ivanova SM; Yarlikova YV; Luneva OG; Ulyanova NA; Parshina EY; Rubin AB
    J Gravit Physiol; 2004 Jul; 11(2):P79-80. PubMed ID: 16235423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygenation-deoxygenation cycle of erythrocytes modulates submicron cell membrane fluctuations.
    Tuvia S; Levin S; Korenstein R
    Biophys J; 1992 Aug; 63(2):599-602. PubMed ID: 1420901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Human blood flow: dynamic fluidity or non-nucleated erythrocytes as cause for great fluidity of rapidly flowing blood].
    Schmid-Schönbein H
    Verh Dtsch Ges Inn Med; 1981; 87():1274-89. PubMed ID: 7331417
    [No Abstract]   [Full Text] [Related]  

  • 17. Biology of red cells: non-nucleated erythrocytes as fluid drop-like cell fragments.
    Schmid-Schönbein H; Gaehtgens P; Fischer T; Stöhr-Liesen M
    Int J Microcirc Clin Exp; 1984; 3(2):161-96. PubMed ID: 6386726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of progesterone and its 17 alpha-hydroxyl derivative on human erythrocyte membrane.
    Kaya H; Saito T
    Jpn J Pharmacol; 1985 Nov; 39(3):299-306. PubMed ID: 4094179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low pH induced shape changes and vesiculation of human erythrocytes.
    Gros M; Vrhovec S; Brumen M; Svetina S; Zeks B
    Gen Physiol Biophys; 1996 Apr; 15(2):145-63. PubMed ID: 8899418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Rheology of red cell ].
    Shiga T
    Nihon Seirigaku Zasshi; 1982; 44(5):187-98. PubMed ID: 6750085
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.