These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 6887045)

  • 1. Modification of potassium movement through the retina of the drone (Apis mellifera male) by glial uptake.
    Coles JA; Orkand RK
    J Physiol; 1983 Jul; 340():157-74. PubMed ID: 6887045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride enters glial cells and photoreceptors in response to light stimulation in the retina of the honey bee drone.
    Coles JA; Orkand RK; Yamate CL
    Glia; 1989; 2(5):287-97. PubMed ID: 2530169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The role of the glial cells in the maintenance of the ionic environment of the photoreceptors of the retina of the drone (author's transl)].
    Tsacopoulos M; Coles JA
    Klin Monbl Augenheilkd; 1978 Apr; 172(4):449-51. PubMed ID: 651211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increase in glial intracellular K+ in drone retina caused by photostimulation but not mediated by an increase in extracellular K+.
    Coles JA; Schneider-Picard G
    Glia; 1989; 2(4):213-22. PubMed ID: 2527820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clearance of extracellular potassium: evidence for spatial buffering by glial cells in the retina of the drone.
    Gardner-Medwin AR; Coles JA; Tsacopoulos M
    Brain Res; 1981 Mar; 209(2):452-7. PubMed ID: 6261870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuron-glial trafficking of NH4+ and K+: separate routes of uptake into glial cells of bee retina.
    Marcaggi P; Jeanne M; Coles JA
    Eur J Neurosci; 2004 Feb; 19(4):966-76. PubMed ID: 15009144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium activity in photoreceptors, glial cells and extracellular space in the drone retina: changes during photostimulation.
    Coles JA; Tsacopoulos M
    J Physiol; 1979 May; 290(2):525-49. PubMed ID: 469798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in sodium activity during light stimulation in photoreceptors, glia and extracellular space in drone retina.
    Coles JA; Orkand RK
    J Physiol; 1985 May; 362():415-35. PubMed ID: 4020694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of photoreceptor metabolism on interstitial and glial cell pH in bee retina: evidence of a role for NH4+.
    Coles JA; Marcaggi P; Véga C; Cotillon N
    J Physiol; 1996 Sep; 495 ( Pt 2)(Pt 2):305-18. PubMed ID: 8887745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functions of glial cells in the retina of the honeybee drone.
    Coles JA
    Glia; 1989; 2(1):1-9. PubMed ID: 2523335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic and possible metabolic interactions between sensory neurones and glial cells in the retina of the honeybee drone.
    Coles JA; Tsacopoulos M
    J Exp Biol; 1981 Dec; 95():75-92. PubMed ID: 7334321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The light-induced increase of carbohydrate metabolism in glial cells of the honeybee retina is not mediated by K+ movement nor by cAMP.
    Evêquoz-Mercier V; Tsacopoulos M
    J Gen Physiol; 1991 Sep; 98(3):497-515. PubMed ID: 1662260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Studies on potassium transport through glial cell membranes (author's transl)].
    Coles JA; Gardner-Medwin AR; Tsacopoulos M
    Klin Monbl Augenheilkd; 1980 Apr; 176(4):522-3. PubMed ID: 7421023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The supply of metabolic substrate from glia to photoreceptors in the retina of the honeybee drone.
    Tsacopoulos M; Coles JA; Van de Werve G
    J Physiol (Paris); 1987; 82(4):279-87. PubMed ID: 3503929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic changes and alterations in the size of the extracellular space during epileptic activity.
    Lux HD; Heinemann U; Dietzel I
    Adv Neurol; 1986; 44():619-39. PubMed ID: 3518349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Cl(-) cotransporter selective for NH(4)(+) over K(+) in glial cells of bee retina.
    Marcaggi P; Coles JA
    J Gen Physiol; 2000 Aug; 116(2):125-42. PubMed ID: 10919861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counter-transport of potassium by the glutamate uptake carrier in glial cells isolated from the tiger salamander retina.
    Amato A; Barbour B; Szatkowski M; Attwell D
    J Physiol; 1994 Sep; 479 ( Pt 3)(Pt 3):371-80. PubMed ID: 7837095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free concentrations of Na, K, and Cl in the retina of the honeybee drone: stimulus-induced redistribution and homeostasis.
    Coles JA; Orkand RK; Yamate CL; Tsacopoulos M
    Ann N Y Acad Sci; 1986; 481():303-17. PubMed ID: 3468862
    [No Abstract]   [Full Text] [Related]  

  • 19. Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering.
    Kofuji P; Biedermann B; Siddharthan V; Raap M; Iandiev I; Milenkovic I; Thomzig A; Veh RW; Bringmann A; Reichenbach A
    Glia; 2002 Sep; 39(3):292-303. PubMed ID: 12203395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic signaling between photoreceptors and glial cells in the retina of the drone (Apis mellifera).
    Brazitikos PD; Tsacopoulos M
    Brain Res; 1991 Dec; 567(1):33-41. PubMed ID: 1815828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.