These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 6887045)

  • 21. Molecular substrates of potassium spatial buffering in glial cells.
    Kofuji P; Connors NC
    Mol Neurobiol; 2003 Oct; 28(2):195-208. PubMed ID: 14576456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glial cells and extracellular potassium: their relationship in mammalian cortex.
    Futamachi KJ; Pedley TA
    Brain Res; 1976 Jun; 109(2):311-22. PubMed ID: 1276917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potassium homeostasis and glial energy metabolism.
    Amédée T; Robert A; Coles JA
    Glia; 1997 Sep; 21(1):46-55. PubMed ID: 9298846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diffusion and consumption of oxygen in the superfused retina of the drone (Apis mellifera) in darkness.
    Tsacopoulos M; Poitry S; Borsellino A
    J Gen Physiol; 1981 Jun; 77(6):601-28. PubMed ID: 7264598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices.
    Ballanyi K; Grafe P; ten Bruggencate G
    J Physiol; 1987 Jan; 382():159-74. PubMed ID: 2442359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regional specialization of the membrane of retinal glial cells and its importance to K+ spatial buffering.
    Newman EA
    Ann N Y Acad Sci; 1986; 481():273-86. PubMed ID: 2434012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial buffering of potassium by retinal Müller (glial) cells of various morphologies calculated by a model.
    Eberhardt W; Reichenbach A
    Neuroscience; 1987 Aug; 22(2):687-96. PubMed ID: 3670605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The activity of a transient potassium current in retinal glial (Müller) cells depends on extracellular calcium.
    Bringmann A; Schopf S; Faude F; Skatchkov SN; Enzmann V; Reichenbach A
    J Hirnforsch; 1999; 39(4):539-50. PubMed ID: 10841453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial buffering of potassium ions in brain extracellular space.
    Chen KC; Nicholson C
    Biophys J; 2000 Jun; 78(6):2776-97. PubMed ID: 10827962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The nutritive function of glia in a crystal-like nervous tissue: the retina of the honeybee drone.
    Tsacopoulos M; Veuthey AL
    Dev Neurosci; 1993; 15(3-5):336-42. PubMed ID: 7805587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extracellular potassium accumulation in the nervous system.
    Orkand RK
    Fed Proc; 1980 Apr; 39(5):1515-8. PubMed ID: 7364046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potassium buffering in the central nervous system.
    Kofuji P; Newman EA
    Neuroscience; 2004; 129(4):1045-56. PubMed ID: 15561419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of osmotic stress on potassium accumulation around glial cells and extracellular space volume in rat spinal cord slices.
    Vargová L; Chvátal A; Anderová M; Kubinová S; Ziak D; Syková E
    J Neurosci Res; 2001 Jul; 65(2):129-38. PubMed ID: 11438982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reaccumulation of [K+]o in the toad retina during maintained illumination.
    Shimazaki H; Oakley B
    J Gen Physiol; 1984 Sep; 84(3):475-504. PubMed ID: 6090581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glial cells transform glucose to alanine, which fuels the neurons in the honeybee retina.
    Tsacopoulos M; Veuthey AL; Saravelos SG; Perrottet P; Tsoupras G
    J Neurosci; 1994 Mar; 14(3 Pt 1):1339-51. PubMed ID: 8120629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The effect of light on glycogen turnover in the retina of the honeybee drone (author's transl)].
    Tsacopoulos M; Evèquoz V
    Klin Monbl Augenheilkd; 1980 Apr; 176(4):519-21. PubMed ID: 7421022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane conductances involved in amplification of small signals by sodium channels in photoreceptors of drone honey bee.
    Vallet AM; Coles JA; Eilbeck JC; Scott AC
    J Physiol; 1992 Oct; 456():303-24. PubMed ID: 1338099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of intracellular calcium and sodium in light adaptation in the retina of the honey bee drone (Apis mellifera, L).
    Bader C; Baumann F; Bertrand D
    J Gen Physiol; 1976 Apr; 67(4):475-91. PubMed ID: 818341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of extracellular calcium and of light adaptation on the response to dim light in honey bee drone photoreceptors.
    Raggenbass M
    J Physiol; 1983 Nov; 344():525-48. PubMed ID: 6655592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opsin expression patterns coincide with photoreceptor development during pupal development in the honey bee, Apis mellifera.
    Lichtenstein L; Grübel K; Spaethe J
    BMC Dev Biol; 2018 Jan; 18(1):1. PubMed ID: 29382313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.