These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 6888183)
1. Conversion of orally administered 2-n.pentylaminoacetamide into glycinamide and glycine in the rat brain. Christophe J; Kutzner R; Nguyen-Bui ND; Damien C; Chatelain P; Gillet L Life Sci; 1983 Aug; 33(6):533-41. PubMed ID: 6888183 [TBL] [Abstract][Full Text] [Related]
2. Glycinamide, a glycine pro-drug, induces antinociception by intraperitoneal or oral ingestion in ovariectomized rats. Beyer C; Komisaruk BK; González-Flores O; Gómora-Arrati P Life Sci; 2013 Mar; 92(10):576-81. PubMed ID: 23369746 [TBL] [Abstract][Full Text] [Related]
3. Formation of the neurotransmitter glycine from the anticonvulsant milacemide is mediated by brain monoamine oxidase B. Janssens de Varebeke P; Cavalier R; David-Remacle M; Youdim MB J Neurochem; 1988 Apr; 50(4):1011-6. PubMed ID: 3346666 [TBL] [Abstract][Full Text] [Related]
4. A microdialysis study of glycinamide, glycine and other amino acid neurotransmitters in rat frontal cortex and hippocampus after the administration of milacemide, a glycine pro-drug. Doheny MH; Nagaki S; Patsalos PN Naunyn Schmiedebergs Arch Pharmacol; 1996 Jul; 354(2):157-63. PubMed ID: 8857592 [TBL] [Abstract][Full Text] [Related]
5. The disposition of valproyl glycinamide and valproyl glycine in rats. Blotnik S; Bergman F; Bialer M Pharm Res; 1997 Jul; 14(7):873-8. PubMed ID: 9244143 [TBL] [Abstract][Full Text] [Related]
6. The structural requirements for the design of antiepileptic-glycine derivatives. Sussan S; Dagan A; Blotnik S; Bialer M Epilepsy Res; 1999 Apr; 34(2-3):207-20. PubMed ID: 10210036 [TBL] [Abstract][Full Text] [Related]
7. Antiepileptic drug pharmacokinetics and neuropharmacokinetics in individual rats by repetitive withdrawal of blood and cerebrospinal fluid: milacemide. Semba J; Curzon G; Patsalos PN Br J Pharmacol; 1993 Apr; 108(4):1117-24. PubMed ID: 8485621 [TBL] [Abstract][Full Text] [Related]
8. Cadaverine in the rat brain: regional distribution and acylation of [14C]cadaverine in vivo and uptake in vitro. Salzman SK; Stepita-Klauco M J Neurochem; 1981 Nov; 37(5):1308-15. PubMed ID: 7299400 [TBL] [Abstract][Full Text] [Related]
9. Metabolism of cadaverine and pipecolic acid in brain and other organs of the mouse. Nomura Y; Schmidt-Glenewinkel T; Giacobini E; Ortiz J J Neurosci Res; 1983; 9(3):279-89. PubMed ID: 6406679 [TBL] [Abstract][Full Text] [Related]
10. In vitro metabolism of cadaverine in the pregnant rat. Henningsson AC; Henningsson S Agents Actions; 1983 Apr; 13(2-3):262-4. PubMed ID: 6408913 [TBL] [Abstract][Full Text] [Related]
11. Effect of milacemide, a glycinamide derivative, on the rat brain gamma-aminobutyric acid system. de Varebeke PJ; Niebes P; Pauwels G; Roba J; Korf J Biochem Pharmacol; 1983 Sep; 32(18):2751-5. PubMed ID: 6414480 [TBL] [Abstract][Full Text] [Related]
12. [Labeling cerebral activity with 3H-deoxyglucose after milacemide administration in the rat]. Van den Bosch de Aguilar P; Goemaere-Vanneste J Acta Neurol Belg; 1984; 84(1):21-5. PubMed ID: 6720246 [TBL] [Abstract][Full Text] [Related]
13. Precursors of glycine in the nervous system: comparison of specific activities in glycine and other amino acids after administration of (U- 14 C) glucose, (3,4- 14 C) glucose, (1- 14 C) glucose, (U- 14 C) serine or (1,5- 14 C) citrate to the rat. Shank RP; Aprison MH; Baxter CF Brain Res; 1973 Mar; 52():301-8. PubMed ID: 4734118 [No Abstract] [Full Text] [Related]
14. Is the oxidation of milacemide by monoamine oxidase a major factor in its anticonvulsant actions? O'Brien EM; Tipton KF; Strolin Benedetti M; Bonsignori A; Marrari P; Dostert P Biochem Pharmacol; 1991 Jun; 41(11):1731-7. PubMed ID: 2043162 [TBL] [Abstract][Full Text] [Related]
15. Substrate specificity of uptake of diamines in mouse brain slices. Lajtha A; Sershen H Arch Biochem Biophys; 1974 Dec; 165(2):539-47. PubMed ID: 4155271 [No Abstract] [Full Text] [Related]
16. Comparative pharmacokinetic and pharmacodynamic analysis of phthaloyl glycine derivatives with potential antiepileptic activity. abu Salach O; Hadad S; Haj-Yehia A; Sussan S; Bialer M Pharm Res; 1994 Oct; 11(10):1429-34. PubMed ID: 7855047 [TBL] [Abstract][Full Text] [Related]
17. Pharmacokinetic and pharmacodynamic analysis of (E)-2-ene valproyl derivatives of glycine and valproyl derivatives of nipecotic acid. Bialer M; Kadry B; Abdul-Hai A; Haj-Yehia A; Sterling J; Herzig Y; Shirvan M Biopharm Drug Dispos; 1996 Oct; 17(7):565-75. PubMed ID: 8894115 [TBL] [Abstract][Full Text] [Related]
18. Postnatal changes in the levels of glycine and the activities of serine hydroxymethyltransferase and glycine:2-oxoglutarate aminotransferase in the rat central nervous system. Davies LP; Johnston GA J Neurochem; 1974 Jan; 22(1):107-12. PubMed ID: 4818862 [No Abstract] [Full Text] [Related]
19. Pharmacokinetic analysis and antiepileptic activity of two new isomers of N-valproyl glycinamide. Hadad S; Bialer M Biopharm Drug Dispos; 1997 Oct; 18(7):557-66. PubMed ID: 9330777 [TBL] [Abstract][Full Text] [Related]
20. Double proton transfer and one-electron oxidation behavior in double H-bonded glycinamide-glycine complex in the gas phase. Li P; Bu Y J Comput Chem; 2005 Apr; 26(6):552-60. PubMed ID: 15726572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]