BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 6888369)

  • 21. Effect of short-chain primary alcohols on fluidity and activity of sarcoplasmic reticulum membranes.
    Almeida LM; Vaz WL; Stümpel J; Madeira VM
    Biochemistry; 1986 Aug; 25(17):4832-9. PubMed ID: 2945592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of bacteriorhodopsin/phospholipid interactions in DMPC and DMPG bilayers: an electron spin resonance spectroscopy and freeze-fracture electron microscopy study.
    Gale P
    Biochem Biophys Res Commun; 1993 Oct; 196(2):879-84. PubMed ID: 8240365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A reliable and rapid procedure to estimate drug partitioning in biomembranes.
    Custódio JB; Almeida LM; Madeira VM
    Biochem Biophys Res Commun; 1991 May; 176(3):1079-85. PubMed ID: 2039491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipid peroxidation in sarcoplasmic reticulum membranes: effect on functional and biophysical properties.
    Dinis TC; Almeida LM; Madeira VM
    Arch Biochem Biophys; 1993 Mar; 301(2):256-64. PubMed ID: 8384829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of increase in orientational order of lipid chains and head group spacing on non steroidal anti-inflammatory drug induced membrane fusion.
    Roy SM; Bansode AS; Sarkar M
    Langmuir; 2010 Dec; 26(24):18967-75. PubMed ID: 21114267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Possible molecular basis for the pharmacokinetics and pharmacodynamics of three membrane-active drugs: propranolol, nimodipine and amiodarone.
    Herbette LG; Trumbore M; Chester DW; Katz AM
    J Mol Cell Cardiol; 1988 May; 20(5):373-8. PubMed ID: 3210248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of phorbol esters with lipid bilayers : thermotropic changes in fluorescence polarization, phase transition and calcium ionophoresis.
    Deleers M; Defrise-Quertain F; Ruysschaert JM; Malaisse WJ
    Res Commun Chem Pathol Pharmacol; 1981 Dec; 34(3):423-39. PubMed ID: 6798652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane topology of a 14-mer model amphipathic peptide: a solid-state NMR spectroscopy study.
    Ouellet M; Doucet JD; Voyer N; Auger M
    Biochemistry; 2007 Jun; 46(22):6597-606. PubMed ID: 17487978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of a type II myosin with biological membranes studied by 2H solid state NMR.
    Arêas JA; Gröbner G; Glaubitz C; Watts A
    Biochemistry; 1998 Apr; 37(16):5582-8. PubMed ID: 9548943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Elucidation of biphasic alterations on acetylcholinesterase (AChE) activity and membrane fluidity in the structure-functional effects of tetracaine on AChE-associated membrane vesicles.
    Chen CH; Zuklie BM; Roth LG
    Arch Biochem Biophys; 1998 Mar; 351(1):135-40. PubMed ID: 9500847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface.
    Voglino L; McIntosh TJ; Simon SA
    Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA and DNA interactions with zwitterionic and charged lipid membranes - a DSC and QCM-D study.
    Michanek A; Kristen N; Höök F; Nylander T; Sparr E
    Biochim Biophys Acta; 2010 Apr; 1798(4):829-38. PubMed ID: 20036213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid domains in biological membranes: their structural and functional perturbation by free fatty acids and the regulation of receptor mobility. Co-presidential address.
    Karnovsky MJ
    Am J Pathol; 1979 Nov; 97(2):212-21. PubMed ID: 525671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Partitioning and location of Bay K 8644, 1,4-dihydropyridine calcium channel agonist, in model and biological membranes.
    Mason RP; Gonye GE; Chester DW; Herbette LG
    Biophys J; 1989 Apr; 55(4):769-78. PubMed ID: 2470429
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of location and binding for the positively charged 1,4-dihydropyridine calcium channel antagonist amlodipine with uncharged drugs of this class in cardiac membranes.
    Mason RP; Campbell SF; Wang SD; Herbette LG
    Mol Pharmacol; 1989 Oct; 36(4):634-40. PubMed ID: 2554114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence that lipid lateral phase separation induces functionally significant structural changes in the Ca+2ATPase of the sarcoplasmic reticulum.
    Asturias FJ; Pascolini D; Blasie JK
    Biophys J; 1990 Jul; 58(1):205-17. PubMed ID: 2143423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The action of membranotropic compounds with various structures on the parameters of the phase transition of dimyristoylphosphatidylcholine].
    Sëmin BK; Bautina AL; Ivanov II
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1989; (5):32-6. PubMed ID: 2765595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions of beta-blockers with model lipid membranes: molecular view of the interaction of acebutolol, oxprenolol, and propranolol with phosphatidylcholine vesicles by time-dependent fluorescence shift and molecular dynamics simulations.
    Först G; Cwiklik L; Jurkiewicz P; Schubert R; Hof M
    Eur J Pharm Biopharm; 2014 Aug; 87(3):559-69. PubMed ID: 24681296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Changes in spatial organization in sarcoplasmic reticulum membranes in rabbits with experimental thyrotoxicosis].
    Marzoev AI; Borshchevskaia TA; Dobretsov GE; Vladimirov IuA
    Biull Eksp Biol Med; 1981 Mar; 91(3):334-5. PubMed ID: 6264991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on calcium transport system in cardiac sarcoplasmic vesicles and its inhibition by dl-propranolol.
    Fujita S
    Arch Int Pharmacodyn Ther; 1976 Mar; 220(1):28-44. PubMed ID: 133644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.