These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 6889772)

  • 1. Frequency compounding for speckle contrast reduction in phased array images.
    Magnin PA; von Ramm OT; Thurstone FL
    Ultrason Imaging; 1982 Jul; 4(3):267-81. PubMed ID: 6889772
    [No Abstract]   [Full Text] [Related]  

  • 2. The combined effect of spatial compounding and nonlinear filtering on the speckle reduction in ultrasound images.
    Adam D; Beilin-Nissan S; Friedman Z; Behar V
    Ultrasonics; 2006 Feb; 44(2):166-81. PubMed ID: 16343578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase aberration correction using echo signals from moving targets. II: Experimental system and results.
    Bohs LN; Zhao D; Trahey GE
    Ultrason Imaging; 1992 Apr; 14(2):111-20. PubMed ID: 1604753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of two-dimensional phase-only filters and compounding for speckle reduction and edge detection in ultrasonic B-scan images.
    Shankar PM
    Appl Opt; 2009 Oct; 48(29):5589-97. PubMed ID: 19823243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Space variant ultrasound frequency compounding based on noise characteristics.
    Erez Y; Schechner YY; Adam D
    Ultrasound Med Biol; 2008 Jun; 34(6):981-1000. PubMed ID: 18374469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speckle reduction in ultrasonic images through a maximum likelihood based adaptive filter.
    Shankar PM
    Phys Med Biol; 2006 Nov; 51(21):5591-602. PubMed ID: 17047272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of ultrasound speckle image velocimetry using image enhancement techniques.
    Yeom E; Nam KH; Paeng DG; Lee SJ
    Ultrasonics; 2014 Jan; 54(1):205-16. PubMed ID: 23725769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative approach to speckle reduction via frequency compounding.
    Trahey GE; Allison JW; Smith SW; von Ramm OT
    Ultrason Imaging; 1986 Jul; 8(3):151-64. PubMed ID: 3548000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bas-relief map using texture analysis with application to live enhancement of ultrasound images.
    Du H; Ma R; Wang X; Zhang J; Fang J
    Ultrasound Med Biol; 2015 May; 41(5):1446-60. PubMed ID: 25641600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction.
    Tsantis S; Spiliopoulos S; Skouroliakou A; Karnabatidis D; Hazle JD; Kagadis GC
    Med Phys; 2014 Jul; 41(7):072903. PubMed ID: 24989413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency diversity speckle processing.
    Gehlbach SM; Sommer FG
    Ultrason Imaging; 1987 Apr; 9(2):92-105. PubMed ID: 3318080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual impact of adaptive speckle reduction on US B-mode images.
    Crawford DC; Cosgrove DO; Tohno E; Svensson WE; al-Murrani B; Bell DS; Stepniewska K; Bamber JC
    Radiology; 1992 May; 183(2):555-61. PubMed ID: 1561368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing.
    Zong X; Laine AF; Geiser EA
    IEEE Trans Med Imaging; 1998 Aug; 17(4):532-40. PubMed ID: 9845309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative measures of boundary and contrast enhancement in speckle reduction in ultrasonic B-mode images using spatial bessel filters.
    Shankar PM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2086-96. PubMed ID: 19942497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional reconstruction of fine vascularity in ultrasound breast imaging using contrast-enhanced spatial compounding: in vitro analyses.
    Hansen C; Hüttebräuker N; Wilkening W; Ermert H
    Acad Radiol; 2008 Sep; 15(9):1155-64. PubMed ID: 18692757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superresolution of ultrasound images using the first and second harmonic signal.
    Taxt T; Jirík R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Feb; 51(2):163-75. PubMed ID: 15055806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enlargement of small format images.
    Hogan JM
    AJR Am J Roentgenol; 1980 Oct; 135(4):875-6. PubMed ID: 6778134
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterization of anisotropic myocardial backscatter using spectral slope, intercept and midband fit parameters.
    Yang M; Krueger TM; Miller JG; Holland MR
    Ultrason Imaging; 2007 Apr; 29(2):122-34. PubMed ID: 17679326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of breast microcalcifications using a strain-compounding technique with ultrasound speckle factor imaging.
    Liao YY; Li CH; Tsui PH; Chang CC; Kuo WH; Chang KJ; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):955-65. PubMed ID: 24859659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound image edge detection based on a novel multiplicative gradient and Canny operator.
    Zheng Y; Zhou Y; Zhou H; Gong X
    Ultrason Imaging; 2015 Jul; 37(3):238-50. PubMed ID: 25315657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.