These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 6890411)

  • 1. Kinetic properties of exchangeable calcium in guinea-pig heart mitochondria measured at low concentrations of free calcium and in the presence of Mg2+, ATP4- and inorganic phosphate.
    Barritt GJ; Lamont SV
    Cell Calcium; 1982 Aug; 3(3):215-25. PubMed ID: 6890411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for two compartments of exchangeable calcium in isolated rat liver mitochondria obtained using a 45Ca exchange technique in the presence of magnesium, phosphate, and ATPase at 37 degrees C.
    Barritt GJ
    J Membr Biol; 1981; 62(1-2):53-63. PubMed ID: 6168763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of lysophospholipids on Ca2+ transport in rat liver mitochondria incubated at physiological Ca2+ concentrations in the presence of Mg2+, phosphate and ATP at 37 degrees C.
    Dalton S; Hughes BP; Barritt GJ
    Biochem J; 1984 Dec; 224(2):423-30. PubMed ID: 6517860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+.
    Wu D; Boyer PD
    Biochemistry; 1986 Jun; 25(11):3390-6. PubMed ID: 2873834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria.
    Denton RM; McCormack JG; Edgell NJ
    Biochem J; 1980 Jul; 190(1):107-17. PubMed ID: 6160850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of adrenaline on a compartment of slowly-exchangeable calcium in the perfused rat heart.
    Lamont SV; Barritt GJ
    Cardiovasc Res; 1983 Feb; 17(2):88-95. PubMed ID: 6409410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinetic investigation of the effects of adrenaline on 45Ca2+ exchange in isolated hepatocytes at different Ca2+ concentrations, at 20 degrees C and in the presence of inhibitors of mitochondrial Ca2+ transport.
    Parker JC; Barritt GJ; Wadsworth JC
    Biochem J; 1983 Oct; 216(1):51-62. PubMed ID: 6651779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of Mg2+ and adenine nucleotides on the sensitivity of the heart mitochondrial Na+-Ca2+ carrier to extramitochondrial Ca2+. A study using arsenazo III-loaded mitochondria.
    Hayat LH; Crompton M
    Biochem J; 1987 Jun; 244(3):533-8. PubMed ID: 3446174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the energy-linked Ca2+ accumulation in pig heart mitochondria - role of Mg2'ons.
    Vial C; Otokore A; Goldschmidt D; Gautheron DC
    Biochimie; 1978; 60(2):159-69. PubMed ID: 667169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of trimetazidine on the calcium transport and oxidative phosphorylation of isolated rat heart mitochondria.
    Guarnieri C; Finelli C; Zini M; Muscari C
    Basic Res Cardiol; 1997 Apr; 92(2):90-5. PubMed ID: 9166988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of intracellular free magnesium concentration in the taenia of guinea-pig caecum.
    Nakayama S; Tomita T
    J Physiol; 1991 Apr; 435():559-72. PubMed ID: 1770450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tri-Calciphor (16,16-dimethyl-15-dehydroprostaglandin B1 trimer)-mediated mitochondrial Ca2+ movements: modulation by phosphate.
    Uribe S; Devlin TM
    Biochim Biophys Acta; 1994 Jan; 1225(2):144-8. PubMed ID: 7904184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that the P2x purinoceptor of the smooth muscle of the guinea pig vas deferens is an ATP4- receptor.
    Fedan JS; Dagirmanjian JP; Attfield MD; Chideckel EW
    J Pharmacol Exp Ther; 1990 Oct; 255(1):46-51. PubMed ID: 2213570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of micromolar concentrations of free Ca2+ ions on pyruvate dehydrogenase interconversion in intact rat heart mitochondria.
    Hansford RG
    Biochem J; 1981 Mar; 194(3):721-32. PubMed ID: 6796064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms.
    Nicholls DG; Scott ID
    Biochem J; 1980 Mar; 186(3):833-9. PubMed ID: 7396840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depletion of intracellular free Mg2+ in Mg2(+)- and Ca2(+)-free solution in the taenia isolated from guinea-pig caecum.
    Nakayama S; Tomita T
    J Physiol; 1990 Feb; 421():363-78. PubMed ID: 2348397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of magnesium in activation of smooth muscle.
    Paul RJ; Rüegg JC
    Am J Physiol; 1988 Oct; 255(4 Pt 1):C465-72. PubMed ID: 3140671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+, and adenine nucleotides.
    Meissner G; Darling E; Eveleth J
    Biochemistry; 1986 Jan; 25(1):236-44. PubMed ID: 3754147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of Ca2+ channel activity by ATP metabolism and internal Mg2+ in guinea-pig basilar artery smooth muscle cells.
    McHugh D; Beech DJ
    J Physiol; 1996 Apr; 492 ( Pt 2)(Pt 2):359-76. PubMed ID: 9019535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spermine. A regulator of mitochondrial calcium cycling.
    Nicchitta CV; Williamson JR
    J Biol Chem; 1984 Nov; 259(21):12978-83. PubMed ID: 6238031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.