These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 6891265)

  • 1. The influence of sterols on pentachlorophenol-induced charge transfer across lipid bilayers studied by alternating current methods.
    Pickar AD; Hobbs J
    Biochim Biophys Acta; 1982 Dec; 693(1):221-36. PubMed ID: 6891265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternating current studies of charge carrier transport in lipid bilayers. Pentachlorophenol in lecithin-cholesterol membranes.
    Pickar AD; Amos WD
    Biochim Biophys Acta; 1976 Nov; 455(1):36-55. PubMed ID: 11003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of sterols on the sensitivity of lipid bilayers to melittin.
    Feigin AM; Teeter JH; Brand JG
    Biochem Biophys Res Commun; 1995 Jun; 211(1):312-7. PubMed ID: 7779101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pentachlorophenol-induced change of zeta-potential and gel-to-fluid transition temperature in model lecithin membranes.
    Smejtek P; Barstad AW; Wang S
    Chem Biol Interact; 1989; 71(1):37-61. PubMed ID: 2776233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric properties of adsorption/ionization site of pentachlorophenol in lipid membranes.
    Smejtek P; Barstad AW; Hsu K
    Biochim Biophys Acta; 1987 Aug; 902(1):109-27. PubMed ID: 3607052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of sterol structure and exogenous lipids on the transbilayer distribution of sterols in the membrane of Mycoplasma capricolum.
    Clejan S; Bittman R; Rottem S
    Biochemistry; 1981 Apr; 20(8):2200-4. PubMed ID: 7236590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution and movement of sterols with different side chain structures between the two leaflets of the membrane bilayer of mycoplasma cells.
    Clejan S; Bittman R
    J Biol Chem; 1984 Jan; 259(1):449-55. PubMed ID: 6706946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planar lipid bilayer membranes.
    Andreoli TE
    Methods Enzymol; 1974; 32():513-39. PubMed ID: 4614005
    [No Abstract]   [Full Text] [Related]  

  • 9. Soybean phosphatidylcholine vesicles containing plant sterols: a fluorescence anisotropy study.
    Schuler I; Duportail G; Glasser N; Benveniste P; Hartmann MA
    Biochim Biophys Acta; 1990 Sep; 1028(1):82-8. PubMed ID: 2207122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative behavior of sterols in phosphatidylcholine-sterol monolayer films.
    Serfis AB; Brancato S; Fliesler SJ
    Biochim Biophys Acta; 2001 Apr; 1511(2):341-8. PubMed ID: 11286977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of ionized and neutral pentachlorophenol to phosphatidylcholine membranes.
    Smejtek P; Wang SR; Barstad AW
    Biochim Biophys Acta; 1987 Nov; 905(1):213-21. PubMed ID: 3676311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid. II. Suppression of tetraphenylborate conductance and changes of interfacial potentials.
    Smejtek P; Paulis-Illangasekare M
    Biophys J; 1979 Jun; 26(3):467-87. PubMed ID: 262428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between the marine sponge cyclic peptide theonellamide A and sterols in lipid bilayers as viewed by surface plasmon resonance and solid-state (2)H nuclear magnetic resonance.
    Espiritu RA; Matsumori N; Murata M; Nishimura S; Kakeya H; Matsunaga S; Yoshida M
    Biochemistry; 2013 Apr; 52(14):2410-8. PubMed ID: 23477347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sterols and sphingolipids strongly affect the growth of fusion pores induced by the hemagglutinin of influenza virus.
    Razinkov VI; Cohen FS
    Biochemistry; 2000 Nov; 39(44):13462-8. PubMed ID: 11063582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sterol structure determines miscibility versus melting transitions in lipid vesicles.
    Beattie ME; Veatch SL; Stottrup BL; Keller SL
    Biophys J; 2005 Sep; 89(3):1760-8. PubMed ID: 15951379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of side-chain analogues of cholesterol on the thermotropic phase behavior of 1-stearoyl-2-oleoylphosphatidylcholine bilayers: a differential scanning calorimetric study.
    Vilchèze C; McMullen TP; McElhaney RN; Bittman R
    Biochim Biophys Acta; 1996 Mar; 1279(2):235-42. PubMed ID: 8603092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the sterol aliphatic side chain on membrane properties: a molecular dynamics study.
    Robalo JR; Ramalho JP; Huster D; Loura LM
    Phys Chem Chem Phys; 2015 Sep; 17(35):22736-48. PubMed ID: 26255832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rates of spontaneous exchange of synthetic radiolabeled sterols between lipid vesicles.
    Kan CC; Yan J; Bittman R
    Biochemistry; 1992 Feb; 31(6):1866-74. PubMed ID: 1737039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of sterol side-chain structure on sterol-phosphatidylcholine interactions in monolayers and small unilamellar vesicles.
    Slotte JP; Jungner M; Vilchèze C; Bittman R
    Biochim Biophys Acta; 1994 Mar; 1190(2):435-43. PubMed ID: 8142447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.