These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6891797)

  • 1. Retinohypothalamic tract symmetry and phase shifts of circadian rhythms in rats and hamsters.
    Stephan FK; Donaldson JA; Gellert J
    Physiol Behav; 1982 Dec; 29(6):1153-8. PubMed ID: 6891797
    [No Abstract]   [Full Text] [Related]  

  • 2. Entrainment of circadian rhythms: retinofugal pathways and unilateral suprachiasmatic nucleus lesions.
    Donaldson JA; Stephan FK
    Physiol Behav; 1982 Dec; 29(6):1161-9. PubMed ID: 7163396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suprachiasmatic nucleus, secondary synchronizing stimuli and the central neural control of circadian rhythms.
    Moore RY
    Brain Res; 1980 Feb; 183(1):13-28. PubMed ID: 7188873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental plasticity in retinohypothalamic connections and the entrainment of circadian rhythms.
    Stephan FK; Nunez AA
    Behav Biol; 1978 Jan; 22(1):77-84. PubMed ID: 623611
    [No Abstract]   [Full Text] [Related]  

  • 5. Involvement of the retinohypothalamic tract in the photic-like effects of the serotonin agonist quipazine in the rat.
    Graff C; Kohler M; PĂ©vet P; Wollnik F
    Neuroscience; 2005; 135(1):273-83. PubMed ID: 16084651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neonatal suprachiasmatic nucleus lesions: effects on the development of circadian rhythms in the rat.
    Mosko SS; Moore RY
    Brain Res; 1979 Mar; 164():17-38. PubMed ID: 427555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamate phase shifts circadian activity rhythms in hamsters.
    Meijer JH; van der Zee EA; Dietz M
    Neurosci Lett; 1988 Mar; 86(2):177-83. PubMed ID: 2897094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The retinohypothalamic tract: comparison of axonal projection patterns from four major targets.
    Canteras NS; Ribeiro-Barbosa ER; Goto M; Cipolla-Neto J; Swanson LW
    Brain Res Rev; 2011 Jan; 65(2):150-83. PubMed ID: 20863850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian activity rhythms in the solitary cape molerat (Georychus capensis: bathyergidae) with some evidence of splitting.
    Lovegrove BG; Papenfus ME
    Physiol Behav; 1995 Oct; 58(4):679-85. PubMed ID: 8559776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast multisite optical recording of mono- and polysynaptic activity in the hamster suprachiasmatic nucleus evoked by retinohypothalamic tract stimulation.
    Senseman DM; Rea MA
    Neuroimage; 1994 Nov; 1(4):247-63. PubMed ID: 9343575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light responsiveness of the suprachiasmatic nucleus within the island with the retino-hypothalamic tract spared.
    Inouye ST
    Brain Res; 1984 Mar; 294(2):263-8. PubMed ID: 6704725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geniculo-hypothalamic tract lesions block chlordiazepoxide-induced phase advances in Syrian hamsters.
    Biello SM; Harrington ME; Mason R
    Brain Res; 1991 Jun; 552(1):47-52. PubMed ID: 1913179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of masking by hypothalamic lesions in Syrian hamsters.
    Li X; Gilbert J; Davis FC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):23-30. PubMed ID: 15449094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delta opioid inhibition of light-induced phase advances in hamster circadian activity rhythms.
    Tierno A; Fiore P; Gannon RL
    Brain Res; 2002 May; 937(1-2):66-73. PubMed ID: 12020864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phase-response curve to the benzodiazepine chlordiazepoxide and the effect of geniculo-hypothalamic tract ablation.
    Meyer EL; Harrington ME; Rahmani T
    Physiol Behav; 1993 Feb; 53(2):237-43. PubMed ID: 8383344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experience-independent development of the hamster circadian visual system.
    Kampf-Lassin A; Wei J; Galang J; Prendergast BJ
    PLoS One; 2011 Apr; 6(4):e16048. PubMed ID: 21556133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypothalamic circuits involved in the regulation of seasonal and circadian rhythms in male golden hamsters.
    Nunez AA; Brown MH; Youngstrom TG
    Brain Res Bull; 1985 Aug; 15(2):149-53. PubMed ID: 4041926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suprachiasmatic nucleus and intergeniculate leaflet in the diurnal rodent Octodon degus: retinal projections and immunocytochemical characterization.
    Goel N; Lee TM; Smale L
    Neuroscience; 1999; 92(4):1491-509. PubMed ID: 10426502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitor of protein synthesis phase shifts a circadian pacemaker in mammalian SCN.
    Inouye ST; Takahashi JS; Wollnik F; Turek FW
    Am J Physiol; 1988 Dec; 255(6 Pt 2):R1055-8. PubMed ID: 3202220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hamster circadian rhythms are phase-shifted by electrical stimulation of the geniculo-hypothalamic tract.
    Rusak B; Meijer JH; Harrington ME
    Brain Res; 1989 Jul; 493(2):283-91. PubMed ID: 2765900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.