These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 689250)

  • 41. The stages of osmotic haemolysis.
    Jay AW; Rowlands S
    J Physiol; 1975 Nov; 252(3):817-32. PubMed ID: 1206576
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adherence of bacteria, yeast, blood cells, and latex spheres to large-porosity membrane filters.
    Zierdt CH
    Appl Environ Microbiol; 1979 Dec; 38(6):1166-72. PubMed ID: 393171
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On the energy dissipation in a tank-treading human red blood cell.
    Fischer TM
    Biophys J; 1980 Nov; 32(2):863-8. PubMed ID: 7260306
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Application of latex microspheres in the isolation of plasma membranes. Affinity density perturbation of erythrocyte membranes.
    Lim RW; Molday RS; Huang HV; Yen SP
    Biochim Biophys Acta; 1975 Jul; 394(3):377-87. PubMed ID: 1093571
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The haemolysis of human erythrocytes in relation to the lattice structure of water. V. Osmotic haemolysis in solutions of electroytes.
    GOOD W
    Biochim Biophys Acta; 1961 Nov; 53():549-56. PubMed ID: 13900251
    [No Abstract]   [Full Text] [Related]  

  • 46. Membrane-related thermo-osmotic effect as measured by medium conductivity in isotonic cell suspensions.
    Antonov P; Pancheva R; Naplatarova M
    J Biochem Biophys Methods; 1990; 21(4):285-8. PubMed ID: 2089070
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Osmotic forces in artificially induced cell fusion.
    Ahkong QF; Lucy JA
    Biochim Biophys Acta; 1986 Jun; 858(1):206-16. PubMed ID: 3707962
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrical sizing of particles in suspensions. II. Experiments with rigid spheres.
    Grover NB; Naaman J; Ben-Sasson S; Doljanski F; Nadav E
    Biophys J; 1969 Nov; 9(11):1415-25. PubMed ID: 5353145
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Permeability coefficients by the hemolytic method: a correction.
    Beck JS; Saari JT
    Biophys J; 1977 Mar; 17(3):281-2. PubMed ID: 843586
    [No Abstract]   [Full Text] [Related]  

  • 50. Permeability of individual human erythrocytes to thiourea.
    Jay AW
    J Physiol; 1976 Nov; 262(2):447-58. PubMed ID: 994044
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The dynamics of the stress stage of osmotic haemolysis.
    Massaldi HA; Fuchs A; Borzi CH
    J Biomech; 1983; 16(2):103-7. PubMed ID: 6863325
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The rate of osmotic influx of water by flexible and inflexible erythrocytes.
    Sirs JA
    J Physiol; 1969 Nov; 205(1):147-57. PubMed ID: 5347714
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The haemolysis of human erythrocytes in relation to the lattice structure of water. VI. Osmotic haemolysis in solution of non-electrolytes.
    GOOD W
    Biochim Biophys Acta; 1962 Feb; 57():104-10. PubMed ID: 13900252
    [No Abstract]   [Full Text] [Related]  

  • 54. The measurement of lymphocyte volume: importance of reference particle deformability and counting solution tonicity.
    Segel GB; Cokelet GR; Lichtman MA
    Blood; 1981 May; 57(5):894-9. PubMed ID: 7214019
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reversible and irreversible modification of erythrocyte membrane permeability by electric field.
    Serpersu EH; Kinosita K; Tsong TY
    Biochim Biophys Acta; 1985 Feb; 812(3):779-85. PubMed ID: 3970906
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Particle-labelled immunoassays: a review.
    Gribnau TC; Leuvering JH; van Hell H
    J Chromatogr; 1986 Apr; 376():175-89. PubMed ID: 3519634
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Possible selective elimination of red blood cells under the influence of colloidal silica.
    Gerashchenko BI; Gerashchenko II; Pantazis CG
    Med Hypotheses; 1996 Jul; 47(1):69-70. PubMed ID: 8819120
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Temperature and external electric field influence in membrane permeability of Babesia infected erythrocytes.
    Gneno R; Azzar G; Got R; Roux B
    Int J Biochem; 1987; 19(11):1069-73. PubMed ID: 3428479
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of electrical deformation forces on the electropermeabilization of erythrocyte membranes in low- and high-conductivity media.
    Sukhorukov VL; Mussauer H; Zimmermann U
    J Membr Biol; 1998 Jun; 163(3):235-45. PubMed ID: 9625780
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrical sizing of particles in suspensions. I. Theory.
    Grover NB; Naaman J; Ben-Sasson S; Doljanski F
    Biophys J; 1969 Nov; 9(11):1398-414. PubMed ID: 5353144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.