These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 6893201)

  • 1. Contractile basis of ameboid movement. VII. Aequorin luminescence during ameboid movement, endocytosis, and capping.
    Taylor DL; Blinks JR; Reynolds G
    J Cell Biol; 1980 Aug; 86(2):599-607. PubMed ID: 6893201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contractile basis of ameboid movement. VII. The distribution of fluorescently labeled actin in living amebas.
    Taylor DL; Wang YL; Heiple JM
    J Cell Biol; 1980 Aug; 86(2):590-8. PubMed ID: 6893200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contractile basis of ameboid movement. VI. The solation-contraction coupling hypothesis.
    Hellewell SB; Taylor DL
    J Cell Biol; 1979 Dec; 83(3):633-48. PubMed ID: 42649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoplasmic free calcium and amoeboid movement.
    Cobbold PH
    Nature; 1980 Jun; 285(5765):441-6. PubMed ID: 6772956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro models of tail contraction and cytoplasmic streaming in amoeboid cells.
    Janson LW; Taylor DL
    J Cell Biol; 1993 Oct; 123(2):345-56. PubMed ID: 8408218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relations between ameboid movement and membrane-controlled electrical currents.
    Nuccitelli R; Poo MM; Jaffe LF
    J Gen Physiol; 1977 Jun; 69(6):743-63. PubMed ID: 19555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contractile basis of ameboid movement. II. Structure and contractility of motile extracts and plasmalemma-ectoplasm ghosts.
    Taylor DL; Rhodes JA; Hammond SA
    J Cell Biol; 1976 Jul; 70(1):123-43. PubMed ID: 6480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pinocytosis and locomotion of amoebae. XIX. Immunocytochemical demonstration of actin and myosin in Amoeba proteus.
    Stockem W; Naib-Majani W; Wohlfarth-Bottermann KE; Osborn M; Weber K
    Eur J Cell Biol; 1983 Jan; 29(2):171-8. PubMed ID: 6339243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contractile basis of amoeboid movement III. Structure and dynamics of motile extracts and membrane fragments from Dictyostelium discoideum and Amoeba proteus.
    Taylor DL; Condeelis JS; Rhodes JA
    Prog Clin Biol Res; 1977; 17():581-603. PubMed ID: 22087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical model for membrane protrusions during spreading.
    Chamaraux F; Ali O; Keller S; Bruckert F; Fourcade B
    Phys Biol; 2008 Sep; 5(3):036009. PubMed ID: 18824791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pinocytosis and locomotion of amoebae. XV. Visualization of Ca++-dynamics by chlorotetracycline (CTC) fluorescence during induced pinocytosis in living Amoeba proteus.
    Gawlitta W; Stockem W; Wehland J; Weber K
    Cell Tissue Res; 1980; 213(1):9-20. PubMed ID: 7459998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analogous ultrastructure and surface properties during capping and phagocytosis in leukocytes.
    Berlin RD; Oliver JM
    J Cell Biol; 1978 Jun; 77(3):789-804. PubMed ID: 567226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of the cytoskeleton in Amoeba proteus. I. Redistribution of microinjected fluorescein-labeled actin during locomotion, immobilization and phagocytosis.
    Stockem W; Hoffmann HU; Gruber B
    Cell Tissue Res; 1983; 232(1):79-96. PubMed ID: 6683994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of stress-induced Ca(2+) pulses in single aequorin-transformed tobacco cells.
    Cessna SG; Messerli MA; Robinson KR; Low PS
    Cell Calcium; 2001 Sep; 30(3):151-6. PubMed ID: 11508994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoplasmic structure and contractility: the solation--contraction coupling hypothesis.
    Taylor DL; Fechheimer M
    Philos Trans R Soc Lond B Biol Sci; 1982 Nov; 299(1095):185-97. PubMed ID: 6129655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational model of ameboid deformation and locomotion.
    Bottino DC; Fauci LJ
    Eur Biophys J; 1998; 27(5):532-9. PubMed ID: 9760734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-induced changes in the location of actin, myosin, 95K (alpha-actinin), and 120K protein in amebae of Dictyostelium discoideum.
    Carboni JM; Condeelis JS
    J Cell Biol; 1985 Jun; 100(6):1884-93. PubMed ID: 3889011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sucrose uptake by pinocytosis in Amoeba proteus and the influence of external calcium.
    Prusch RD; Hannafin JA
    J Gen Physiol; 1979 Oct; 74(4):523-35. PubMed ID: 512629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TAT-mediated aequorin transduction: an alternative approach for effective calcium measurements in plant cells.
    Zonin E; Moscatiello R; Miuzzo M; Cavallarin N; Di Paolo ML; SandonĂ  D; Marin O; Brini M; Negro A; Navazio L
    Plant Cell Physiol; 2011 Dec; 52(12):2225-35. PubMed ID: 22025557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm.
    Taylor DL; Condeelis JS; Moore PL; Allen RD
    J Cell Biol; 1973 Nov; 59(2 Pt 1):378-94. PubMed ID: 4805006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.