These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 6894242)

  • 1. Characterization of a mitochondrial NADH-dependent nitro reductase from rat brain.
    Köchli HW; Wermuth B; von Wartburg JP
    Biochim Biophys Acta; 1980 Dec; 616(2):133-42. PubMed ID: 6894242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a mitochondrial p-dinitrobenzene reductase activity in rat liver.
    Abou-Khalil S; Abou-Khalil WH; Yunis AA
    Pharmacology; 1985; 31(6):301-8. PubMed ID: 3841216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topology of 3 beta-hydroxy-5-ene-steroid dehydrogenase/delta 5-delta 4-isomerase in adrenal cortex mitochondria and microsomes.
    Sauer LA; Chapman JC; Dauchy RT
    Endocrinology; 1994 Feb; 134(2):751-9. PubMed ID: 8299570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arrhenius plots of membrane-bound enzymes of mitochondria and microsomes in the brain cortex of developing and old rats.
    Gorgani MN; Pour-Rahimi F; Meisami E
    Mech Ageing Dev; 1986 Jun; 35(1):1-15. PubMed ID: 3736127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on bacterial nitroreductases. Enzymes involved in reduction of aromatic nitro compounds in Escherichia coli.
    Kitamura S; Narai N; Tatsumi K
    J Pharmacobiodyn; 1983 Jan; 6(1):18-24. PubMed ID: 6343584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and some properties of glyoxylate reductase (NADP+) and its functional location in mitochondria in Euglena gracilis z.
    Yokota A; Haga S; Kitaoka S
    Biochem J; 1985 Apr; 227(1):211-6. PubMed ID: 3922357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solubilization and partial characterization of rat epididymal delta 4-steroid 5 alpha-reductase (cholestenone 5 alpha-reductase).
    Scheer H; Robaire B
    Biochem J; 1983 Apr; 211(1):65-74. PubMed ID: 6870829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Sled VD; Vinogradov AD
    Biochim Biophys Acta; 1992 Jan; 1098(2):144-50. PubMed ID: 1730007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria.
    Turrens JF; Boveris A
    Biochem J; 1980 Nov; 191(2):421-7. PubMed ID: 6263247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcellular localization of aldehyde reductase activities in ox brain.
    Ryle CM; Tipton KF
    Biochem J; 1981 Sep; 197(3):715-20. PubMed ID: 7034723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular distribution of OM cytochrome b-mediated NADH-semidehydroascorbate reductase activity in rat liver.
    Nishino H; Ito A
    J Biochem; 1986 Dec; 100(6):1523-31. PubMed ID: 3571184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of 4-ene-5 alpha-reductase and studies on its solubilization from porcine testicular microsomes.
    Watkins WJ; Goldring CE; Gower DB
    J Steroid Biochem; 1988 Mar; 29(3):325-31. PubMed ID: 3357339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of the mitochondrial NADH-ubiquinone oxidoreductase interaction with hexammineruthenium(III).
    Sled VD; Vinogradov AD
    Biochim Biophys Acta; 1993 Mar; 1141(2-3):262-8. PubMed ID: 8443212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors.
    Yamashita A; Miyoshi H; Hatano T; Iwamura H
    J Biochem; 1996 Aug; 120(2):377-84. PubMed ID: 8889824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and enzymatic activity of an NADH-fumarate reductase and other mitochondrial activities of Leishmania parasites.
    Chen M; Bennedsen M; Zhai L; Kharazmi A
    APMIS; 2001 Dec; 109(12):801-8. PubMed ID: 11846720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment.
    Kukiełka E; Dicker E; Cederbaum AI
    Arch Biochem Biophys; 1994 Mar; 309(2):377-86. PubMed ID: 8135551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of the mitochondrial NADH-ubiquinone reductase with rotenone as related to the enzyme active/inactive transition.
    Grivennikova VG; Maklashina EO; Gavrikova EV; Vinogradov AD
    Biochim Biophys Acta; 1997 Apr; 1319(2-3):223-32. PubMed ID: 9131045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.