These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 6894537)

  • 61. Vanadium K-edge X-ray-absorption spectroscopy of the functioning and thionine-oxidized forms of the VFe-protein of the vanadium nitrogenase from Azotobacter chroococcum.
    Arber JM; Dobson BR; Eady RR; Hasnain SS; Garner CD; Matsushita T; Nomura M; Smith BE
    Biochem J; 1989 Mar; 258(3):733-7. PubMed ID: 2730564
    [TBL] [Abstract][Full Text] [Related]  

  • 62. On the origin of the cyanolysable sulphur in molybdenum iron/sulphur flavin hydroxylases.
    Coughlan MP
    FEBS Lett; 1977 Sep; 81(1):1-6. PubMed ID: 902762
    [No Abstract]   [Full Text] [Related]  

  • 63. Physicochemical and kinetic properties of purified sheep's milk xanthine oxidoreductase.
    Benboubetra M; Baghiani A; Atmani D; Harrison R
    J Dairy Sci; 2004 Jun; 87(6):1580-4. PubMed ID: 15453470
    [TBL] [Abstract][Full Text] [Related]  

  • 64. X-ray absorption spectroscopy of a quantitatively Mo(V) dimethyl sulfoxide reductase species.
    Pushie MJ; Cotelesage JJ; Lyashenko G; Hille R; George GN
    Inorg Chem; 2013 Mar; 52(6):2830-7. PubMed ID: 23445435
    [TBL] [Abstract][Full Text] [Related]  

  • 65. X-ray absorption spectroscopy of a structural analogue of the oxidized active sites in the sulfite oxidase enzyme family and related molybdenum(V) complexes.
    Jalilehvand F; Lim BS; Holm RH; Hedman B; Hodgson KO
    Inorg Chem; 2003 Sep; 42(18):5531-6. PubMed ID: 12950200
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The composition of milk xanthine oxidase.
    Hart LI; McGartoll MA; Chapman HR; Bray RC
    Biochem J; 1970 Mar; 116(5):851-64. PubMed ID: 5441374
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Electron-paramagnetic-resonance spectroscopy of complexes of xanthine oxidase with xanthine and uric acid.
    Bray RC; Barber MJ; Lowe DJ
    Biochem J; 1978 Jun; 171(3):653-8. PubMed ID: 208512
    [TBL] [Abstract][Full Text] [Related]  

  • 68. X-ray absorption spectroscopic characterization of the molybdenum site of Escherichia coli dimethyl sulfoxide reductase.
    George GN; Doonan CJ; Rothery RA; Boroumand N; Weiner JH
    Inorg Chem; 2007 Jan; 46(1):2-4. PubMed ID: 17198404
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The crystal structure of xanthine oxidoreductase during catalysis: implications for reaction mechanism and enzyme inhibition.
    Okamoto K; Matsumoto K; Hille R; Eger BT; Pai EF; Nishino T
    Proc Natl Acad Sci U S A; 2004 May; 101(21):7931-6. PubMed ID: 15148401
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Resonance Raman studies of xanthine oxidase: The reduced enzyme-product complex with violapterin.
    Hemann C; Ilich P; Stockert AL; Choi EY; Hille R
    J Phys Chem B; 2005 Feb; 109(7):3023-31. PubMed ID: 16851316
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of exchange of the cysteine molybdenum ligand with selenocysteine on the structure and function of the active site in human sulfite oxidase.
    Reschke S; Niks D; Wilson H; Sigfridsson KG; Haumann M; Rajagopalan KV; Hille R; Leimkühler S
    Biochemistry; 2013 Nov; 52(46):8295-303. PubMed ID: 24147957
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Sulfur K-edge extended X-ray absorption fine structure spectroscopy of homoleptic thiolato complexes with Zn(II) and Cd(II).
    Matsunaga Y; Fujisawa K; Ibi N; Fujita M; Ohashi T; Amir N; Miyashita Y; Aika K; Izumi Y; Okamoto K
    J Inorg Biochem; 2006 Feb; 100(2):239-49. PubMed ID: 16387363
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Resonance Raman studies on xanthine oxidase: observation of Mo(VI)-ligand vibrations.
    Maiti NC; Tomita T; Kitagawa T; Okamoto K; Nishino T
    J Biol Inorg Chem; 2003 Feb; 8(3):327-33. PubMed ID: 12589568
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Characterization by 27Al NMR, X-ray absorption spectroscopy, and density functional theory techniques of the species responsible for benzene hydrogenation in Y zeolite-supported carburized molybdenum catalysts.
    Rocha AS; da Silva VT; Eon JG; de Menezes SM; Faro AC; Rocha AB
    J Phys Chem B; 2006 Aug; 110(32):15803-11. PubMed ID: 16898729
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An extended-X-ray-absorption-fine-structure investigation of diferric transferrins and their iron-binding fragments.
    Garratt RC; Evans RW; Hasnain SS; Lindley PF
    Biochem J; 1986 Jan; 233(2):479-84. PubMed ID: 3954746
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Studies by e.p.r. spectroscopy of carbon monoxide oxidases from Pseudomonas carboxydovorans and Pseudomonas carboxydohydrogena.
    Bray RC; George GN; Lange R; Meyer O
    Biochem J; 1983 Jun; 211(3):687-94. PubMed ID: 6309136
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Sulfur-containing cobalamins: X-ray absorption spectroscopic characterization.
    Scheuring EM; Sagi I; Chance MR
    Biochemistry; 1994 May; 33(20):6310-5. PubMed ID: 8193146
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structure of LaMo(2)O(5) Containing Both Isolated Mo(6)O(18) Clusters and Sheets of Fused Triangular Mo(3) Clusters.
    Hibble SJ; Cooper SP; Hannon AC; Patat S; McCarroll WH
    Inorg Chem; 1998 Dec; 37(26):6839-6846. PubMed ID: 11670820
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Molybdenum site structure of MOSC family proteins.
    Giles LJ; Ruppelt C; Yang J; Mendel RR; Bittner F; Kirk ML
    Inorg Chem; 2014 Sep; 53(18):9460-2. PubMed ID: 25166909
    [TBL] [Abstract][Full Text] [Related]  

  • 80. X-ray absorption spectroscopy of copper and iron in sheep digesta.
    Clarkson AH; Kendall NR
    J Trace Elem Med Biol; 2022 Jul; 72():126987. PubMed ID: 35504155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.