These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 6894706)
1. Movement and self-control in protein assemblies. Quasi-equivalence revisited. Caspar DL Biophys J; 1980 Oct; 32(1):103-38. PubMed ID: 6894706 [TBL] [Abstract][Full Text] [Related]
2. Self-assembly of biological macromolecules. Perham RN Philos Trans R Soc Lond B Biol Sci; 1975 Nov; 272(915):123-36. PubMed ID: 1808 [TBL] [Abstract][Full Text] [Related]
3. Quasi- and nonequivalence in the structure of bacterial flagellar filament. Hasegawa K; Yamashita I; Namba K Biophys J; 1998 Jan; 74(1):569-75. PubMed ID: 9449357 [TBL] [Abstract][Full Text] [Related]
4. The bacterial flagellum as an imperfect cylindrical crystal: flagellar geometry, movement and polymorphism, and the role of partial dislocations. Harris WF J Theor Biol; 1974 Oct; 47(2):295-308. PubMed ID: 4437188 [No Abstract] [Full Text] [Related]
5. Quasi-equivalent viruses: a paradigm for protein assemblies. Johnson JE; Speir JA J Mol Biol; 1997 Jun; 269(5):665-75. PubMed ID: 9223631 [TBL] [Abstract][Full Text] [Related]
6. Assembly of the tail of bacteriophage T4. Kikuchi Y; King J J Supramol Struct; 1975; 3(1):24-38. PubMed ID: 1152465 [TBL] [Abstract][Full Text] [Related]
7. A simulation of T4 bacteriophage assembly and operation. Thompson RL; Goel NS Biosystems; 1985; 18(1):23-45. PubMed ID: 3840704 [TBL] [Abstract][Full Text] [Related]
8. [The role of structural changes in T4 bacteriophage tail proteins]. Veprintseva OD; Emel'ianenko VI; Konstantinova VV; Shnyrov VL Biofizika; 1988; 33(6):954-61. PubMed ID: 2977729 [TBL] [Abstract][Full Text] [Related]
9. The tail structure of bacteriophage T4 and its mechanism of contraction. Kostyuchenko VA; Chipman PR; Leiman PG; Arisaka F; Mesyanzhinov VV; Rossmann MG Nat Struct Mol Biol; 2005 Sep; 12(9):810-3. PubMed ID: 16116440 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of linear protein polymer disassembly. Kristofferson D; Karr TL; Purich DL J Biol Chem; 1980 Sep; 255(18):8567-72. PubMed ID: 6893327 [TBL] [Abstract][Full Text] [Related]
11. The refined three-dimensional structure of an insect virus at 2.8 A resolution. Wery JP; Reddy VS; Hosur MV; Johnson JE J Mol Biol; 1994 Jan; 235(2):565-86. PubMed ID: 8289282 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Leiman PG; Chipman PR; Kostyuchenko VA; Mesyanzhinov VV; Rossmann MG Cell; 2004 Aug; 118(4):419-29. PubMed ID: 15315755 [TBL] [Abstract][Full Text] [Related]
13. Reducing irreducible complexity: divergence of quaternary structure and function in macromolecular assemblies. Egelman EH Curr Opin Cell Biol; 2010 Feb; 22(1):68-74. PubMed ID: 20006482 [TBL] [Abstract][Full Text] [Related]
14. Normal modes of symmetric protein assemblies. Application to the tobacco mosaic virus protein disk. Simonson T; Perahia D Biophys J; 1992 Feb; 61(2):410-27. PubMed ID: 1547329 [TBL] [Abstract][Full Text] [Related]
15. Structural and physicochemical analysis of the contractile MM phage tail and comparison with the bacteriophage T4 tail. Müller M; Engel A; Aebi U J Struct Biol; 1994; 112(1):11-31. PubMed ID: 8031638 [TBL] [Abstract][Full Text] [Related]
16. Construction of bacterial flagellar filaments, and aspects of their conversion to different helical forms. Calladine CR Symp Soc Exp Biol; 1982; 35():33-51. PubMed ID: 6764043 [TBL] [Abstract][Full Text] [Related]
17. Continuum model for polymorphism of bacterial flagella. Srigiriraju SV; Powers TR Phys Rev Lett; 2005 Jun; 94(24):248101. PubMed ID: 16090580 [TBL] [Abstract][Full Text] [Related]
18. The catalytic core of an archaeal 2-oxoacid dehydrogenase multienzyme complex is a 42-mer protein assembly. Marrott NL; Marshall JJ; Svergun DI; Crennell SJ; Hough DW; Danson MJ; van den Elsen JM FEBS J; 2012 Mar; 279(5):713-23. PubMed ID: 22188654 [TBL] [Abstract][Full Text] [Related]
19. Construction of an energy transfer system in the bio-nanocup space by heteromeric assembly of gp27 and gp5 proteins isolated from bacteriophage T4. Koshiyama T; Ueno T; Kanamaru S; Arisaka F; Watanabe Y Org Biomol Chem; 2009 Jun; 7(12):2649-54. PubMed ID: 19503942 [TBL] [Abstract][Full Text] [Related]
20. How Biophysics May Help Us Understand the Flagellar Motor of Bacteria Which Cause Infections. Baker MA Adv Exp Med Biol; 2016; 915():231-43. PubMed ID: 27193546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]