These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 6894860)
41. Calorimetric, x-ray diffraction, and spectroscopic studies of the thermotropic phase behavior and organization of tetramyristoyl cardiolipin membranes. Lewis RN; Zweytick D; Pabst G; Lohner K; McElhaney RN Biophys J; 2007 May; 92(9):3166-77. PubMed ID: 17293402 [TBL] [Abstract][Full Text] [Related]
42. Phase behavior of large unilamellar vesicles composed of synthetic phospholipids. Parente RA; Lentz BR Biochemistry; 1984 May; 23(11):2353-62. PubMed ID: 6477871 [TBL] [Abstract][Full Text] [Related]
43. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion. Siegel DP Biophys J; 1986 Jun; 49(6):1171-83. PubMed ID: 3719075 [TBL] [Abstract][Full Text] [Related]
44. Size and structure of spontaneously forming liposomes in lipid/PEG-lipid mixtures. Rovira-Bru M; Thompson DH; Szleifer I Biophys J; 2002 Nov; 83(5):2419-39. PubMed ID: 12414678 [TBL] [Abstract][Full Text] [Related]
45. Lung surfactant proteins, SP-B and SP-C, alter the thermodynamic properties of phospholipid membranes: a differential calorimetry study. Shiffer K; Hawgood S; Haagsman HP; Benson B; Clements JA; Goerke J Biochemistry; 1993 Jan; 32(2):590-7. PubMed ID: 8422370 [TBL] [Abstract][Full Text] [Related]
46. A calorimetric study on diflunisal release from poly(lactide-co-glycolide) microspheres by monitoring the drug effect on dipalmitoylphosphatidylcholine liposomes: temperature and drug loading influence. Castelli F; Giunchedi P; La Camera O; Conte U Drug Deliv; 2000; 7(1):45-53. PubMed ID: 10895419 [TBL] [Abstract][Full Text] [Related]
47. Temperature dependence of membrane ion conductance analyzed by using the amphiphilic anion 5/6-carboxyfluorescein. Bramhall J; Hofmann J; DeGuzman R; Montestruque S; Schell R Biochemistry; 1987 Oct; 26(20):6330-40. PubMed ID: 3427008 [TBL] [Abstract][Full Text] [Related]
48. Aggregation of dipalmitoylphosphatidylcholine vesicles. Wong M; Thompson TE Biochemistry; 1982 Aug; 21(17):4133-9. PubMed ID: 6896999 [TBL] [Abstract][Full Text] [Related]
49. Effects of alcohol-induced lipid interdigitation on proton permeability in L-alpha-dipalmitoylphosphatidylcholine vesicles. Zeng J; Smith KE; Chong PL Biophys J; 1993 Oct; 65(4):1404-14. PubMed ID: 8274634 [TBL] [Abstract][Full Text] [Related]
50. The interaction of apolipoprotein A-I with small unilamellar vesicles of L-alpha-dipalmitoylphosphatidylcholine. Klausner RD; Blumenthal R; Innerarity T; Weinstein JN J Biol Chem; 1985 Nov; 260(25):13719-27. PubMed ID: 3932344 [TBL] [Abstract][Full Text] [Related]
51. Effects of proteins on thermotropic phase transitions of phospholipid membranes. Papahadjopoulos D; Moscarello M; Eylar EH; Isac T Biochim Biophys Acta; 1975 Sep; 401(3):317-35. PubMed ID: 52374 [TBL] [Abstract][Full Text] [Related]
52. Formation and Properties of Lamellar Phases in Systems of Cationic Surfactants and Hydroxy-Naphthoate. Horbaschek K; Hoffmann H; Thunig C J Colloid Interface Sci; 1998 Oct; 206(2):439-456. PubMed ID: 9756656 [TBL] [Abstract][Full Text] [Related]
53. Modulation of membrane fusion by membrane fluidity: temperature dependence of divalent cation induced fusion of phosphatidylserine vesicles. Wilschut J; Düzgüneş N; Hoekstra D; Papahadjopoulos D Biochemistry; 1985 Jan; 24(1):8-14. PubMed ID: 3994974 [TBL] [Abstract][Full Text] [Related]
54. Calorimetric and spectroscopic studies of the thermotropic phase behavior of lipid bilayer model membranes composed of a homologous series of linear saturated phosphatidylserines. Lewis RN; McElhaney RN Biophys J; 2000 Oct; 79(4):2043-55. PubMed ID: 11023908 [TBL] [Abstract][Full Text] [Related]
55. Effect of vesicle size on the prodan fluorescence in diheptadecanoylphosphatidylcholine bilayer membrane under atmospheric and high pressures. Goto M; Sawaguchi H; Tamai N; Matsuki H; Kaneshina S Langmuir; 2010 Aug; 26(16):13377-84. PubMed ID: 20695581 [TBL] [Abstract][Full Text] [Related]
56. Molecular properties of a stratum corneum model lipid system: large unilamellar vesicles. Hatfield RM; Fung LW Biophys J; 1995 Jan; 68(1):196-207. PubMed ID: 7711242 [TBL] [Abstract][Full Text] [Related]
57. Characterization of a third phase transition in multilamellar dipalmitoyllecithin liposomes. Füldner HH Biochemistry; 1981 Sep; 20(20):5707-10. PubMed ID: 6895317 [TBL] [Abstract][Full Text] [Related]
58. Estimation of molecular averages and equilibrium fluctuations in lipid bilayer systems from the excess heat capacity function. Freire E; Biltonen R Biochim Biophys Acta; 1978 Dec; 514(1):54-68. PubMed ID: 581474 [TBL] [Abstract][Full Text] [Related]
59. Effect of liposomal size on the calorimetric behavior of mixed-chain phosphatidylcholine bilayer dispersions. Mason JT; Huang C; Biltonen RL Biochemistry; 1983 Apr; 22(8):2013-8. PubMed ID: 6849901 [TBL] [Abstract][Full Text] [Related]
60. Calorimetric investigations of phase transitions of sonicated vesicles of dimyristoylphosphatidylcholine. Kodama M; Miyata T; Takaichi Y Biochim Biophys Acta; 1993 Jul; 1169(1):90-7. PubMed ID: 8334155 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]