BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 6895224)

  • 1. Metabolism of leukotriene D by porcine kidney.
    Bernström K; Hammarström S
    J Biol Chem; 1981 Sep; 256(18):9579-82. PubMed ID: 6895224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leukotrienes.
    Hammarström S
    Annu Rev Biochem; 1983; 52():355-77. PubMed ID: 6311078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of 15-hydroxylated metabolites of leukotriene C4.
    Orning L; Hammarström S
    FEBS Lett; 1983 Mar; 153(2):253-6. PubMed ID: 6413247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of leukotrienes E3, E4 and E5 in rat basophilic leukemia cells.
    Orning L; Bernström K; Hammarström S
    Eur J Biochem; 1981 Nov; 120(1):41-5. PubMed ID: 6273168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. n-3 fatty acids and cysteinyl-leukotriene formation in humans in vitro, ex vivo, and in vivo.
    von Schacky C; Kiefl R; Jendraschak E; Kaminski WE
    J Lab Clin Med; 1993 Feb; 121(2):302-9. PubMed ID: 8381847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cysteinyl-leukotriene receptor antagonist BAY u9773 is a competitive antagonist of leukotriene C4 in the guinea-pig ileum.
    Bäck M; Jonsson EW; Dahlén SE
    Eur J Pharmacol; 1996 Dec; 317(1):107-13. PubMed ID: 8982726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of 5,8,11-eicosatrienoic acid to leukotrienes C3 and D3.
    Hammarström S
    J Biol Chem; 1981 Mar; 256(5):2275-9. PubMed ID: 6780563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of leukotriene E4 to 5-hydroxy-6-mercapto7,9-trans-11,14-cis-eicosatetraenoic acid by microfloral cysteine-conjugate beta-lyase and rat cecum contents.
    Bernström K; Larsen GL; Hammarström S
    Arch Biochem Biophys; 1989 Dec; 275(2):531-9. PubMed ID: 2556967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-648,051, sodium 4-[3-(4-acetyl-3-hydroxy-2-propylphenoxy)- propylsulfonyl]-gamma-oxo-benzenebutanoate: a leukotriene D4 receptor antagonist.
    Jones TR; Guindon Y; Young R; Champion E; Charette L; Denis D; Ethier D; Hamel R; Ford-Hutchinson AW; Fortin R
    Can J Physiol Pharmacol; 1986 Dec; 64(12):1535-42. PubMed ID: 3030524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the C(6)-S-conjugate of leukotriene A with cysteine as a naturally occurring slow reacting substance of anaphylaxis (SRS-A). Importance of the 11-cis-geometry for biological activity.
    Lewis RA; Drazen JM; Austen KF; Clark DA; Corey EJ
    Biochem Biophys Res Commun; 1980 Sep; 96(1):271-7. PubMed ID: 6254506
    [No Abstract]   [Full Text] [Related]  

  • 11. A novel leukotriene formed by transpeptidation of leukotriene E.
    Bernström K; Hammarström S
    Biochem Biophys Res Commun; 1982 Dec; 109(3):800-4. PubMed ID: 6130764
    [No Abstract]   [Full Text] [Related]  

  • 12. Omega-oxidation of cysteine-containing leukotrienes by rat-liver microsomes. Isolation and characterization of omega-hydroxy and omega-carboxy metabolites of leukotriene E4 and N-acetylleukotriene E4.
    Orning L
    Eur J Biochem; 1987 Dec; 170(1-2):77-85. PubMed ID: 2826163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-649,923, sodium (beta S*, gamma R*)-4-(3-(4-acetyl-3-hydroxy-2-propylphenoxy)-propylthio)- gamma-hydroxy-beta-methylbenzenebutanoate, a selective, orally active leukotriene receptor antagonist.
    Jones TR; Young R; Champion E; Charette L; Denis D; Ford-Hutchinson AW; Frenette R; Gauthier JY; Guindon Y; Kakushima M
    Can J Physiol Pharmacol; 1986 Aug; 64(8):1068-75. PubMed ID: 3024787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterisation of receptors for cysteinyl leukotrienes in smooth muscle.
    Jonsson EW
    Acta Physiol Scand Suppl; 1998 Mar; 641():1-55. PubMed ID: 9597121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leukotriene C5: a slow reacting substance derived from eicosapentaenoic acid.
    Hammarström S
    J Biol Chem; 1980 Aug; 255(15):7093-4. PubMed ID: 6104669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo metabolism of leukotriene C4 in germ-free and conventional rats. Fecal excretion of N-acetylleukotriene E4.
    Orning L; Norin E; Gustafsson B; Hammarström S
    J Biol Chem; 1986 Jan; 261(2):766-71. PubMed ID: 3941100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the actions of leukotriene E4 with those of leukotrienes B4, C4, and D4 on guinea pig lung and ileal smooth muscle in vitro.
    Piper PJ; Samhoun MN
    Adv Prostaglandin Thromboxane Leukot Res; 1983; 12():127-31. PubMed ID: 6303079
    [No Abstract]   [Full Text] [Related]  

  • 18. Leukotriene C4: the major lipoxygenase metabolite of arachidonic acid in dog spleen.
    Malik KU; Wong PY
    Biochem Biophys Res Commun; 1981 Nov; 103(2):511-20. PubMed ID: 6800364
    [No Abstract]   [Full Text] [Related]  

  • 19. Leukotriene D: a slow reacting substance from rat basophilic leukemia cells.
    Orning L; Hammarström S; Samuelsson B
    Proc Natl Acad Sci U S A; 1980 Apr; 77(4):2014-7. PubMed ID: 6103542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leukotrienes C4, D4 and E4: effects on human and guinea-pig cardiac preparations in vitro.
    Burke JA; Levi R; Guo ZG; Corey EJ
    J Pharmacol Exp Ther; 1982 Apr; 221(1):235-41. PubMed ID: 6278136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.