These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6895370)

  • 1. Temperature dependence of dipalmitoyl phosphatidylcholine monolayer stability.
    Goerke J; Gonzales J
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Nov; 51(5):1108-14. PubMed ID: 6895370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The melting of pulmonary surfactant monolayers.
    Yan W; Biswas SC; Laderas TG; Hall SB
    J Appl Physiol (1985); 2007 May; 102(5):1739-45. PubMed ID: 17194731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistence of phase coexistence in disaturated phosphatidylcholine monolayers at high surface pressures.
    Crane JM; Putz G; Hall SB
    Biophys J; 1999 Dec; 77(6):3134-43. PubMed ID: 10585934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase transitions in films of lung surfactant at the air-water interface.
    Nag K; Perez-Gil J; Ruano ML; Worthman LA; Stewart J; Casals C; Keough KM
    Biophys J; 1998 Jun; 74(6):2983-95. PubMed ID: 9635752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical properties of dipalmitoyl phosphatidylcholine after interaction with an apolipoprotein of pulmonary surfactant.
    King RJ; Macbeth MC
    Biochim Biophys Acta; 1979 Oct; 557(1):86-101. PubMed ID: 583570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid fluidity in lung surfactant: monolayers of saturated and unsaturated lecithins.
    Hawco MW; Davis PJ; Keough KM
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Aug; 51(2):509-15. PubMed ID: 6894918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An alternative view of phospholipid phase behavior at the air-water interface. Microscope and film balance studies.
    von Tscharner V; McConnell HM
    Biophys J; 1981 Nov; 36(2):409-19. PubMed ID: 6895478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics for the collapse of trilayer liquid-crystalline disks from a monolayer at an air-water interface.
    Rugonyi S; Smith EC; Hall SB
    Langmuir; 2005 Aug; 21(16):7303-7. PubMed ID: 16042458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface forces in lungs. I. Alveolar surface tension-lung volume relationships.
    Smith JC; Stamenovic D
    J Appl Physiol (1985); 1986 Apr; 60(4):1341-50. PubMed ID: 3754553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential.
    Winterhalter M; Bürner H; Marzinka S; Benz R; Kasianowicz JJ
    Biophys J; 1995 Oct; 69(4):1372-81. PubMed ID: 8534807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metastability of a supercompressed fluid monolayer.
    Smith EC; Crane JM; Laderas TG; Hall SB
    Biophys J; 2003 Nov; 85(5):3048-57. PubMed ID: 14581205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bilirubin interactions with phospholipid components of lung surfactant.
    Notter RH; Shapiro DL; Taubold R; Chen J
    Pediatr Res; 1982 Feb; 16(2):130-6. PubMed ID: 6895780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between equilibrium spreading pressure and phase equilibria of phospholipid bilayers and monolayers at the air-water interface.
    Mansour HM; Zografi G
    Langmuir; 2007 Mar; 23(7):3809-19. PubMed ID: 17323986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared spectroscopic investigations of pulmonary surfactant. Surface film transitions at the air-water interface and bulk phase thermotropism.
    Dluhy RA; Reilly KE; Hunt RD; Mitchell ML; Mautone AJ; Mendelsohn R
    Biophys J; 1989 Dec; 56(6):1173-81. PubMed ID: 2611331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein rotation and chromophore orientation in reconstituted bacteriorhodopsin vesicles.
    Hoffmann W; Restall CJ; Hyla R; Chapman D
    Biochim Biophys Acta; 1980 Nov; 602(3):531-8. PubMed ID: 6893670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulmonary surface film stability and composition.
    Hildebran JN; Goerke J; Clements JA
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Sep; 47(3):604-11. PubMed ID: 583282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the gel <=> liquid-crystalline phase transition in the lung surfactant cycle.
    Gugliotti M; Politi MJ
    Biophys Chem; 2001 Feb; 89(2-3):243-51. PubMed ID: 11254217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of F-DPPC/DPPC mixed monolayers. Influence of subphase temperature on F-DPPC and DPPC monolayers.
    Toimil P; Prieto G; Miñones J; Sarmiento F
    Phys Chem Chem Phys; 2010 Oct; 12(40):13323-32. PubMed ID: 20844794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid compression transforms interfacial monolayers of pulmonary surfactant.
    Crane JM; Hall SB
    Biophys J; 2001 Apr; 80(4):1863-72. PubMed ID: 11259299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemolysis of rat erythrocytes by replacement of the natural phosphatidylcholine by various phosphatidylcholines.
    Lange LG; Van Meer G; Op den Kamp JA; Van Deenen LL
    Eur J Biochem; 1980 Sep; 110(1):115-21. PubMed ID: 6893690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.