These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 6895475)
1. Raman and Fourier transform infrared spectroscopic studies of the interaction between glycophorin and dimyristoylphosphatidylcholine. Mendelsohn R; Dluhy R; Taraschi T; Cameron DG; Mantsch HH Biochemistry; 1981 Nov; 20(23):6699-706. PubMed ID: 6895475 [TBL] [Abstract][Full Text] [Related]
2. Interaction of dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine-d54 mixtures with glycophorin. A fourier transform infrared investigation. Dluhy RA; Mendelsohn R; Casal HL; Mantsch HH Biochemistry; 1983 Mar; 22(5):1170-7. PubMed ID: 6687692 [TBL] [Abstract][Full Text] [Related]
3. Calorimetric and Fourier transform infrared spectroscopic studies on the interaction of glycophorin with phosphatidylserine/dipalmitoylphosphatidylcholine-d62 mixtures. Mendelsohn R; Brauner JW; Faines L; Mantsch HH; Dluhy RA Biochim Biophys Acta; 1984 Jul; 774(2):237-46. PubMed ID: 6547620 [TBL] [Abstract][Full Text] [Related]
4. Interaction of glycophorin with phosphatidylserine: a Fourier transform infrared investigation. Mendelsohn R; Dluhy RA; Crawford T; Mantsch HH Biochemistry; 1984 Mar; 23(7):1498-504. PubMed ID: 6722103 [TBL] [Abstract][Full Text] [Related]
5. Effect of glycophorin incorporation on the physico-chemical properties of phospholipid bilayers. van Zoelen EJ; van Dijck PW; de Kruijff B; Verkleij AJ; van Deenen LL Biochim Biophys Acta; 1978 Dec; 514(1):9-24. PubMed ID: 718907 [TBL] [Abstract][Full Text] [Related]
6. Lipid-protein interaction in the glycophorin-dipalmitoylphosphatidylcholine system: Raman spectroscopic investigation. Taraschi T; Mendelsohn R Proc Natl Acad Sci U S A; 1980 May; 77(5):2362-6. PubMed ID: 16592811 [TBL] [Abstract][Full Text] [Related]
7. A Fourier transform infrared spectroscopic study of the interaction of alkaline earth cations with the negatively charged phospholipid 1, 2-dimyristoyl-sn-glycero-3-phosphoglycerol. Garidel P; Blume A; Hübner W Biochim Biophys Acta; 2000 Jun; 1466(1-2):245-59. PubMed ID: 10825446 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the pretransition in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine by Fourier transform infrared spectroscopy. Cameron DG; Casal HL; Mantsch HH Biochemistry; 1980 Aug; 19(16):3665-72. PubMed ID: 6893274 [TBL] [Abstract][Full Text] [Related]
10. Conformational nonequivalence of chains 1 and 2 of dipalmitoyl phosphatidylcholine as observed by Raman spectroscopy. Gaber BP; Yager P; Peticolas WL Biophys J; 1978 Dec; 24(3):677-88. PubMed ID: 581650 [TBL] [Abstract][Full Text] [Related]
11. Effect of staphylococcal delta-lysin on the thermotropic phase behavior and vesicle morphology of dimyristoylphosphatidylcholine lipid bilayer model membranes. Differential scanning calorimetric, 31P nuclear magnetic resonance and Fourier transform infrared spectroscopic, and X-ray diffraction studies. Lohner K; Staudegger E; Prenner EJ; Lewis RN; Kriechbaum M; Degovics G; McElhaney RN Biochemistry; 1999 Dec; 38(50):16514-28. PubMed ID: 10600113 [TBL] [Abstract][Full Text] [Related]
12. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylcholine bilayers: differential scanning calorimetric and FTIR spectroscopic studies. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 1992 Nov; 31(46):11579-88. PubMed ID: 1445893 [TBL] [Abstract][Full Text] [Related]
13. Fourier transform infrared spectroscopic identification of gel phase domains in reconstituted phospholipid vesicles containing Ca2+-ATPase. Jaworsky M; Mendelsohn R Biochim Biophys Acta; 1986 Sep; 860(3):491-502. PubMed ID: 2943318 [TBL] [Abstract][Full Text] [Related]
14. Raman spectroscopy of the thermal properties of reassembled high-density lipoprotein: apolipoprotein A-I complexes of dimyristoylphosphatidylcholine. Gilman T; Kauffman JW; Pownall HJ Biochemistry; 1981 Feb; 20(3):656-61. PubMed ID: 6783071 [TBL] [Abstract][Full Text] [Related]
15. Lipid lateral heterogeneity in phosphatidylcholine/phosphatidylserine/diacylglycerol vesicles and its influence on protein kinase C activation. Dibble AR; Hinderliter AK; Sando JJ; Biltonen RL Biophys J; 1996 Oct; 71(4):1877-90. PubMed ID: 8889163 [TBL] [Abstract][Full Text] [Related]
17. Barrier properties of glycophorin-phospholipid systems prepared by different methods. Van der Steen AT; Taraschi TF; Voorhout WF; De Kruijff B Biochim Biophys Acta; 1983 Aug; 733(1):51-64. PubMed ID: 6688359 [TBL] [Abstract][Full Text] [Related]
18. Effects of cyclosporine A on biomembranes. Vibrational spectroscopic, calorimetric and hemolysis studies. O'Leary TJ; Ross PD; Lieber MR; Levin IW Biophys J; 1986 Apr; 49(4):795-801. PubMed ID: 3755063 [TBL] [Abstract][Full Text] [Related]
19. Fourier-transform infrared studies of CaATPase partitioning in phospholipid mixtures of 1,2-dipalmitoylphosphatidylcholine-d62 with 1-palmitoyl-2-oleoylphosphatidylethanolamine and 1-stearoyl-2-oleoylphosphatidylcholine. Jaworsky M; Mendelsohn R Biochemistry; 1985 Jul; 24(14):3422-8. PubMed ID: 2931112 [TBL] [Abstract][Full Text] [Related]
20. Differential scanning calorimetry and (2)H nuclear magnetic resonance and Fourier transform infrared spectroscopy studies of the effects of transmembrane alpha-helical peptides on the organization of phosphatidylcholine bilayers. Paré C; Lafleur M; Liu F; Lewis RN; McElhaney RN Biochim Biophys Acta; 2001 Mar; 1511(1):60-73. PubMed ID: 11248205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]