These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 6895606)

  • 41. Stimulation of nitrate reductase activity of the salt-tolerant yeast Rhodotorula glutinis by tungsten in the presence of molybdenum.
    Nosikov AN; Chichikalo EV; Golubeva LI; Zvyagilskaya RA; L'vov NP
    Biochemistry (Mosc); 2000 Feb; 65(2):204-7. PubMed ID: 10713548
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Involvement of molybdenum and iron in the in vitro assembly of assimilatory nitrate reductase utilizing Neurospora mutant nit-1.
    Lee KY; Pan SS; Erickson R; Nason A
    J Biol Chem; 1974 Jun; 249(12):3941-52. PubMed ID: 4151814
    [No Abstract]   [Full Text] [Related]  

  • 43. The composition of milk xanthine oxidase.
    Hart LI; McGartoll MA; Chapman HR; Bray RC
    Biochem J; 1970 Mar; 116(5):851-64. PubMed ID: 5441374
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nitrate reductase from bacteroides of Rhizobium japonicum: enzyme characteristics and possible interaction with nitrogen fixation.
    Kennedy IR; Rigaud J; Trinchant JC
    Biochim Biophys Acta; 1975 Jul; 397(1):24-35. PubMed ID: 1170894
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molybdenum and tungsten enzymes: a crystallographic and mechanistic overview.
    Romão MJ
    Dalton Trans; 2009 Jun; (21):4053-68. PubMed ID: 19452052
    [TBL] [Abstract][Full Text] [Related]  

  • 46. N-Hydroxyguanidine compound 1-(3,4-dimethoxy- 2-chlorobenzylideneamino)-3-hydroxyguanidine inhibits the xanthine oxidase mediated generation of superoxide radical.
    Dambrova M; Baumane L; Kiuru A; Kalvinsh I; Wikberg JE
    Arch Biochem Biophys; 2000 May; 377(1):101-8. PubMed ID: 10775447
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molybdenum and tungsten enzymes: the xanthine oxidase family.
    Brondino CD; Romão MJ; Moura I; Moura JJ
    Curr Opin Chem Biol; 2006 Apr; 10(2):109-14. PubMed ID: 16480912
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Xanthine oxidase polymorphism in bovine milk.
    Zikakis JP; Treece JM
    J Dairy Sci; 1971 May; 54(5):648-54. PubMed ID: 5568334
    [No Abstract]   [Full Text] [Related]  

  • 49. Electron paramagnetic resonance and circular dichroism studies on milk xanthine oxidase.
    Palmer G; Massey V
    J Biol Chem; 1969 May; 244(10):2614-20. PubMed ID: 4306032
    [No Abstract]   [Full Text] [Related]  

  • 50. Escherichia coli nitrate reductase subunit A: its role as the catalytic site and evidence for its modification.
    Chaudhry GR; MacGregor CH
    J Bacteriol; 1983 Apr; 154(1):387-94. PubMed ID: 6403509
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stereospecificity of hydrogen removal from pyridine nucleotide: the reactions catalyzed by nitrate reductase and by xanthine oxidase.
    Guerrero MG; Vennesland B
    FEBS Lett; 1975 Mar; 51(1):284-6. PubMed ID: 235456
    [No Abstract]   [Full Text] [Related]  

  • 52. Nitrate reductase from anaerobically grown Rhizobium japonicum.
    Daniel RM; Gray J
    J Gen Microbiol; 1976 Oct; 96(2):247-51. PubMed ID: 993777
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Persistence of bovine milk xanthine oxidase activity after gastric digestion in vivo and in vitro.
    Zikakis JP; Rzucidlo SJ; Biasotto NO
    J Dairy Sci; 1977 Apr; 60(4):533-41. PubMed ID: 16941
    [No Abstract]   [Full Text] [Related]  

  • 54. Electron spin resonance of non-haem iron in xanthine oxidase.
    Gibson JF; Bray RC
    Biochim Biophys Acta; 1968 Apr; 153(3):721-3. PubMed ID: 4297065
    [No Abstract]   [Full Text] [Related]  

  • 55. The influence of dietary molybdenum on the xanthine oxidase activity of the milk of ruminants.
    Hart LI; Owen EC; Proudfoot R
    Br J Nutr; 1967 Aug; 21(3):617-30. PubMed ID: 6052879
    [No Abstract]   [Full Text] [Related]  

  • 56. [The nutritional importance and physiopathology of molybdenum in man].
    Neve J
    J Pharm Belg; 1991; 46(3):189-96. PubMed ID: 1757880
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Purification and partial characterization of xanthine oxidase from human milk.
    Abadeh S; Killacky J; Benboubetra M; Harrison R
    Biochim Biophys Acta; 1992 Jul; 1117(1):25-32. PubMed ID: 1627588
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tetrathionate reductase of Salmonella thyphimurium: a molybdenum containing enzyme.
    Hinojosa-Leon M; Dubourdieu M; Sanchez-Crispin JA; Chippaux M
    Biochem Biophys Res Commun; 1986 Apr; 136(2):577-81. PubMed ID: 3518717
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vitro reconstitution of demolybdosulfite oxidase by a molybdenum cofactor from rat liver and other sources.
    Johnson JL; Jones HP; Rajagopalan KV
    J Biol Chem; 1977 Jul; 252(14):4994-5003. PubMed ID: 873926
    [No Abstract]   [Full Text] [Related]  

  • 60. The role of molybdenum in xanthine oxidase and related enzymes. Reactivity with cyanide, arsenite, and methanol.
    Coughlan MP; Rajagopalan KV; Handler P
    J Biol Chem; 1969 May; 244(10):2658-63. PubMed ID: 4306033
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.