These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 6896156)

  • 1. 31P nuclear magnetic resonance of phosphonic acid analogues of adenosine nucleotides as functions of pH and magnesium ion concentration.
    Schliselfeld LH; Burt CT; Labotka RJ
    Biochemistry; 1982 Jan; 21(2):317-20. PubMed ID: 6896156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorothioate analogues of 5-phosphoribosyl 1-diphosphate: 31P nuclear magnetic resonance study.
    Smithers GW; O'Sullivan WJ
    Biochemistry; 1984 Sep; 23(20):4773-8. PubMed ID: 6208938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 31P nuclear magnetic resonance spectra of the thiophosphate analogues of adenine nucleotides; effects of pH and Mg2+ binding.
    Jaffe EK; Cohn M
    Biochemistry; 1978 Feb; 17(4):652-7. PubMed ID: 23826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus-31 nuclear magnetic resonance studies of the methylene and fluoro analogues of adenine nucleotides. Effects of pH and magnesium ion binding.
    Vogel HJ; Bridger WA
    Biochemistry; 1982 Jan; 21(2):394-401. PubMed ID: 7074023
    [No Abstract]   [Full Text] [Related]  

  • 5. 31P nuclear magnetic resonance study of phosphoribosyldiphosphate and its interaction with magnesium ions.
    Smithers GW; O'Sullivan WJ
    J Biol Chem; 1982 Jun; 257(11):6164-70. PubMed ID: 6176581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The alpha beta-methylene analogues of ADP and ATP act as substrates for creatine kinase. delta G0 for this reaction and for the hydrolysis of the alpha beta-methylene analogue of ATP.
    Milner-White EJ; Rycroft DS
    Eur J Biochem; 1983 Jun; 133(1):169-72. PubMed ID: 6852021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does the magnesium(II) ion interact with the alpha-phosphate of adenosine triphosphate? An investigation by oxygen-17 nuclear magnetic resonance.
    Huang SL; Tsai MD
    Biochemistry; 1982 Mar; 21(5):951-9. PubMed ID: 7074064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A phosphorus-magnetic-resonance study of the interaction of Mg2+ with adenyl-5'-yl imidodiphosphate. Binding sites of Mg2+ ion on the phosphate chain.
    Tran-Dinh S; Roux M
    Eur J Biochem; 1977 Jun; 76(1):245-9. PubMed ID: 18351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Mg2+ on cardiac performance, intracellular free Mg2+ and pH in perfused hearts as assessed with 31P nuclear magnetic resonance spectroscopy.
    Barbour RL; Altura BM; Reiner SD; Dowd TL; Gupta RK; Wu F; Altura BT
    Magnes Trace Elem; 1991-1992; 10(2-4):99-116. PubMed ID: 1844566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure response of
    Karl M; Spoerner M; Pham TV; Narayanan SP; Kremer W; Kalbitzer HR
    Biophys Chem; 2017 Dec; 231():50-54. PubMed ID: 28395928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of phosphate metabolites, the intracellular pH, and the state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance.
    Burt CT; Glonek T; Bárány M
    J Biol Chem; 1976 May; 251(9):2584-91. PubMed ID: 4452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 31P-NMR spectra of AP4.
    Klaus W; Rösch P; Goody RS
    Res Exp Med (Berl); 1985; 185(2):145-50. PubMed ID: 3992058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competition between Li+ and Mg2+ for ATP and ADP in aqueous solution: a multinuclear NMR study.
    Abraha A; de Freitas DE; Margarida M; Castro CA; Geraldes CF
    J Inorg Biochem; 1991 May; 42(3):191-8. PubMed ID: 1880501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 31P-NMR analysis of synaptic vesicles. Status of ATP and internal pH.
    Füldner HH; Stadler H
    Eur J Biochem; 1982 Jan; 121(3):519-24. PubMed ID: 7056254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous determination of intracellular magnesium and pH from the three 31P NMR Chemical shifts of ATP.
    Williams GD; Mosher TJ; Smith MB
    Anal Biochem; 1993 Nov; 214(2):458-67. PubMed ID: 8109734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in intracellular Mg adenosine triphosphate and ionized Mg2+ during blood storage: detection by 31P nuclear magnetic resonance spectroscopy.
    Bock JL; Wenz B; Gupta RK
    Blood; 1985 Jun; 65(6):1526-30. PubMed ID: 3922457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability constants of Mg2+ and Cd2+ complexes of adenine nucleotides and thionucleotides and rate constants for formation and dissociation of MgATP and MgADP.
    Pecoraro VL; Hermes JD; Cleland WW
    Biochemistry; 1984 Oct; 23(22):5262-71. PubMed ID: 6334536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. trans-1,2-Diaminocyclohexane-N,N,N',N'-tetraacetic acid is superior to ethylenediamine-N,N,N',N'-tetraacetic acid for sequestering Mg2+ in 31P NMR experiments involving ATP spectra at neutral and acidic pH.
    Bass MB; Fromm HJ
    Anal Biochem; 1985 Mar; 145(2):292-301. PubMed ID: 3925810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium interactions with lithium and sodium salts of adenosine triphosphate: an investigation by phosphorus-31 nuclear magnetic resonance spectroscopy.
    Hughes MS; Partridge S; Marr G; Birch NJ
    Magnes Res; 1988 Jul; 1(1-2):35-8. PubMed ID: 3274926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 31P-NMR study of mono- and dimagnesium complexes of adenosine 5'-triphosphate and model systems.
    Bishop EO; Kimber SJ; Orchard D; Smith BE
    Biochim Biophys Acta; 1981 Mar; 635(1):63-72. PubMed ID: 6783084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.