BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 6896282)

  • 1. Lack of transbilayer coupling in phase transitions of phosphatidylcholine vesicles.
    Sillerud LO; Barnett RE
    Biochemistry; 1982 Apr; 21(8):1756-60. PubMed ID: 6896282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of surface curvature on the head-group structure and phase transition properties of phospholipid bilayer vesicles.
    Eigenberg KE; Chan SI
    Biochim Biophys Acta; 1980 Jun; 599(1):330-5. PubMed ID: 7397156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of paramagnetic shift reagents on the 13C nuclear magnetic resonance spectra of egg phosphatidylcholine enriched with 13C in the N-methyl carbons.
    Sears B; Hutton WC; Thompson TE
    Biochemistry; 1976 Apr; 15(8):1635-9. PubMed ID: 178350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems.
    Lindsey H; Petersen NO; Chan SI
    Biochim Biophys Acta; 1979 Jul; 555(1):147-67. PubMed ID: 476096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-catalyzed phospholipid exchange in bilayer vesicles determined by flow cytometry and electron microscopy.
    Xü YH; Rüppel D; Ziegler H; Hartmann W; Galla HJ
    Biochim Biophys Acta; 1982 Aug; 689(3):437-43. PubMed ID: 6897001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boundary lipids and protein mobility in rhodopsin-phosphatidylcholine vesicles. Effect of lipid phase transitions.
    Davoust J; Bienvenue A; Fellmann P; Devaux PF
    Biochim Biophys Acta; 1980 Feb; 596(1):28-42. PubMed ID: 6243483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for cooperative effects in the bind of polyvalent metal ions to pure phosphatidylcholine bilayer vesicle surfaces.
    Chrzeszczyk A; Wishnia A; Springer CS
    Biochim Biophys Acta; 1981 Oct; 648(1):28-48. PubMed ID: 6895325
    [No Abstract]   [Full Text] [Related]  

  • 8. Magnetic resonance study of the distribution of 2,2,6,6-tetramethylpiperidine-N-oxyl in phosphatidylcholine bilayers.
    Sillerud LO; Barnett RE
    Biochim Biophys Acta; 1977 Mar; 465(3):466-70. PubMed ID: 189814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-13 nuclear magnetic resonance studies of cholesterol-egg yolk phosphatidylcholine vesicles.
    Brainard JR; Cordes EH
    Biochemistry; 1981 Aug; 20(16):4607-17. PubMed ID: 7197546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular motion and order in oriented lipid multibilayer membranes evaluated by simulations of spin label ESR spectra. Effects of temperature, cholesterol and magnetic field.
    Shimoyama Y; Eriksson LE; Ehrenberg A
    Biochim Biophys Acta; 1978 Apr; 508(2):213-35. PubMed ID: 205243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of an adenosine triphosphatase trigger-fused lipid vesicle and other vesicle forms of dimyristoylphosphatidylcholine.
    Dufour JP; Nunnally R; Buhle L; Tsong TY
    Biochemistry; 1981 Sep; 20(19):5576-86. PubMed ID: 6457634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-catalyzed phospholipid exchange between gel and liquid-crystalline phospholipid vesicles.
    Kasper AM; Helmkamp GM
    Biochemistry; 1981 Jan; 20(1):146-51. PubMed ID: 7470465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for phase boundary lipid. Permeability of Tempo-choline into dimyristoylphosphatidylcholine vesicles at the phase transition.
    Marsh D; Watts A; Knowles PF
    Biochemistry; 1976 Aug; 15(16):3570-8. PubMed ID: 182212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR, calorimetric, spin-label, and optical studies on a trifluoromethyl-substituted styryl molecular probe in dimyristoylphosphatidylcholine vesicles and multilamellar suspensions: a model for location of optical probes.
    Bammel BP; Hamilton DD; Haugland RP; Hopkins HP; Schuette J; Szalecki W; Smith JC
    Biochim Biophys Acta; 1990 May; 1024(1):61-81. PubMed ID: 2159805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical characterization of large unilamellar phospholipid vesicles prepared by reverse-phase evaporation.
    Düzgüneş N; Wilschut J; Hong K; Fraley R; Perry C; Friend DS; James TL; Papahadjopoulos D
    Biochim Biophys Acta; 1983 Jul; 732(1):289-99. PubMed ID: 6688185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine-d54 mixtures with glycophorin. A fourier transform infrared investigation.
    Dluhy RA; Mendelsohn R; Casal HL; Mantsch HH
    Biochemistry; 1983 Mar; 22(5):1170-7. PubMed ID: 6687692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase equilibria in binary mixtures of phosphatidylcholine and cholesterol.
    Recktenwald DJ; McConnell HM
    Biochemistry; 1981 Jul; 20(15):4505-10. PubMed ID: 6269591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of trans-parinaric acid with phosphatidylcholine bilayers: comparison with the effect of other fluorophores.
    Ben Yashar V; Menashe M; Biltonen RL; Johnson ML; Barenholz Y
    Biochim Biophys Acta; 1987 Nov; 904(1):117-24. PubMed ID: 3663661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential scanning calorimetry and 31P NMR studies on sonicated and unsonicated phosphatidylcholine liposomes.
    de Kruijff B; Cullis PR; Radda GK
    Biochim Biophys Acta; 1975 Sep; 406(1):6-20. PubMed ID: 1242108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.