These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6896653)

  • 1. Anomalies of nanosecond ultrasonic relaxation in the lipid bilayer transition.
    Mitaku S; Date T
    Biochim Biophys Acta; 1982 Jun; 688(2):411-21. PubMed ID: 6896653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic properties of the lipid bilayer transition. Pseudocritical phenomena.
    Mitaku S; Jippo T; Kataoka R
    Biophys J; 1983 May; 42(2):137-44. PubMed ID: 6688030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic measurements of two-component lipid bilayer suspensions.
    Mitaku S; Okano K
    Biophys Chem; 1981 Oct; 14(2):147-58. PubMed ID: 6895704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic study of melittin effects on phospholipid model membranes.
    Colotto A; Kharakoz DP; Lohner K; Laggner P
    Biophys J; 1993 Dec; 65(6):2360-7. PubMed ID: 8312475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultrasonic study of the thermotropic transition of dipalmitoyl phosphatidylcholine.
    Harkness JE; White RD
    Biochim Biophys Acta; 1979 Apr; 552(3):450-6. PubMed ID: 582151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic studies of lipid bilayer. Phase transition in synthetic phosphatidylcholine liposomes.
    Mitaku S; Ikegami A; Sakanishi A
    Biophys Chem; 1978 Sep; 8(4):295-304. PubMed ID: 581558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between Ca2+ and dipalmitoylphosphatidylcholine membranes. I. Transition anomalies of ultrasonic properties.
    Aruga S; Kataoka R; Mitaku S
    Biophys Chem; 1985 Mar; 21(3-4):265-75. PubMed ID: 3838685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic evidence for structural relaxation in large unilamellar liposomes.
    Strom-Jensen PR; Magin RL; Dunn F
    Biochim Biophys Acta; 1984 Jan; 769(1):179-86. PubMed ID: 6546350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of A23187 on the phospholipid phase transition of large unilamellar vesicles (LUVs) as detected by ultrasound spectroscopy.
    Ma LD; Magin RL; Dunn F
    Biochim Biophys Acta; 1990 Feb; 1022(1):17-26. PubMed ID: 2154261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol-induced variations in the domain structure fluctuations and microdynamics of lipid membranes.
    Schrader W; Behrends R; Kaatze U
    J Phys Chem B; 2012 Mar; 116(8):2446-54. PubMed ID: 22308957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanosecond relaxation processes of phospholipid bilayers in the transition zone.
    Gamble RC; Schimmel PR
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3011-4. PubMed ID: 277906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-frequency ultrasonic absorption spectroscopy on aqueous suspensions of phospholipid bilayer vesicles.
    Kaatze U; Lautscham K
    Biophys Chem; 1988 Dec; 32(2-3):153-60. PubMed ID: 3251564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimyristoylphosphatidic acid/cholesterol bilayers. Thermodynamic properties and kinetics of the phase transition as studied by the pressure jump relaxation technique.
    Blume A; Hillmann M
    Eur Biophys J; 1986; 13(6):343-53. PubMed ID: 3757929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chain-length dependence of lipid bilayer properties near the liquid crystal to gel phase transition.
    Morrow MR; Whitehead JP; Lu D
    Biophys J; 1992 Jul; 63(1):18-27. PubMed ID: 1420865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilizing effect of cholesterol on phosphatidylcholine vesicles observed by ultrasonic velocity measurement.
    Sakanishi A; Mitaku S; Ikegami A
    Biochemistry; 1979 Jun; 18(12):2636-42. PubMed ID: 444482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relaxation dynamics of the gel to liquid-crystalline transition of phosphatidylcholine bilayers. Effects of chainlength and vesicle size.
    van Osdol WW; Johnson ML; Ye Q; Biltonen RL
    Biophys J; 1991 Apr; 59(4):775-85. PubMed ID: 2065185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited rotational motion of amphiphilic flavins in dipalmitoylphosphatidylcholine vesicles.
    Visser AJ
    Biochim Biophys Acta; 1982 Nov; 692(2):244-51. PubMed ID: 6897364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion selectivity of temperature-induced and electric field induced pores in dipalmitoylphosphatidylcholine vesicles.
    el-Mashak EM; Tsong TY
    Biochemistry; 1985 Jun; 24(12):2884-8. PubMed ID: 3839414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density fluctuations and rotational isomerization in phospholipid bilayers as studied by ultrasonic absorption spectroscopy.
    Kaatze U; Brai M
    Chem Phys Lipids; 1993 Apr; 65(1):85-9. PubMed ID: 8348678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory.
    Xiang TX; Anderson BD
    Biophys J; 1997 Jan; 72(1):223-37. PubMed ID: 8994607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.