These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 6897226)

  • 41. Expression pattern of Anosmin-1 during pre- and postnatal rat brain development.
    Clemente D; Esteban PF; Del Valle I; Bribián A; Soussi-Yanicostas N; Silva A; De Castro F
    Dev Dyn; 2008 Sep; 237(9):2518-28. PubMed ID: 18729208
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preliminary study on sarcoglycan sub-complex in rat cerebral and cerebellar cortex.
    Vermiglio G; Runci M; Scibilia A; Biasini F; Cutroneo G
    Ital J Anat Embryol; 2012; 117(1):54-64. PubMed ID: 22894000
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cytochemical comparison of two kinds of experimental hypoxia: changes of RNA content per cell in cerebellar and cerebral cortex neurons and perineuronal glia.
    Pevzner LZ
    Exp Neurol; 1979 Jul; 65(1):237-41. PubMed ID: 95560
    [No Abstract]   [Full Text] [Related]  

  • 44. The influence of early protein-calorie malnutrition on neuronal and glial protein synthesis. An experimental study on rats.
    Hamberger A; Sourander P
    Neurochem Res; 1978 Oct; 3(5):535-47. PubMed ID: 106314
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Binding of dihydroartemisinin to differentiating neuroblastoma cells and rat cortical homogenate.
    Fishwick J; Edwards G; Ward SA; McLean WG
    Neurotoxicology; 1998 Jun; 19(3):405-12. PubMed ID: 9621346
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Immunohistochemical localization of S-100 protein in human cerebral and cerebellar cortices.
    Tabuchi K; Ohnishi R; Furuta T; Nishimoto A
    Experientia; 1983 Mar; 39(3):335-7. PubMed ID: 6337865
    [No Abstract]   [Full Text] [Related]  

  • 47. Polyploidy in the human nervous system. 1. The DNA content of neurones and glia of the cerebellum.
    Mann DM; Yates PO
    J Neurol Sci; 1973 Feb; 18(2):183-96. PubMed ID: 4120486
    [No Abstract]   [Full Text] [Related]  

  • 48. Interaction of a protein from rat liver nuclei with cruciform DNA.
    Bianchi ME
    EMBO J; 1988 Mar; 7(3):843-9. PubMed ID: 3396544
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spontaneous DNA breaks in the rat brain during development and aging.
    Mullaart E; Boerrigter ME; Boer GJ; Vijg J
    Mutat Res; 1990 Jan; 237(1):9-15. PubMed ID: 2181298
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neurons in the cerebral cortex are most susceptible to DNA-damage in aging rat brain.
    Mandavilli BS; Rao KS
    Biochem Mol Biol Int; 1996 Oct; 40(3):507-14. PubMed ID: 8908359
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cerebral and cerebellar neurochemical changes and behavioral manifestations in rats chronically exposed to marijuana smoke.
    Luthra YK; Rosenkrantz H; Braude MC
    Toxicol Appl Pharmacol; 1976 Mar; 35(3):455-65. PubMed ID: 1265760
    [No Abstract]   [Full Text] [Related]  

  • 52. Phosphorylation of nuclear proteins from rabbit cerebrum, cerebellum and liver in vitro.
    Yanagihara T; Oh'Hara I; Arvidson C; Gintz J
    J Neurochem; 1978 Jul; 31(1):225-31. PubMed ID: 671021
    [No Abstract]   [Full Text] [Related]  

  • 53. Age-dependence of heat-induced strand separation of DNA in situ in postmitotic cells of rat brain as revealed by acridine orange microfluorimetry.
    Nagy IZ; Nagy VZ
    Mech Ageing Dev; 1975; 4(5-6):349-60. PubMed ID: 1228334
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Age-dependent changes in the level of a 34 kDa DNA-binding protein in developing chick embryo liver.
    David E; Shanmugam G
    FEBS Lett; 1985 Aug; 187(2):201-4. PubMed ID: 4040477
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deoxyribonucleic acid turnover in immature neurons of the rat cerebral cortex.
    Hobi R; Kuenzle CC
    Neurosci Lett; 1985 Aug; 58(3):311-4. PubMed ID: 4047491
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Histones and DNA increase synchronously in neurons during early postnatal development of the rat forebrain cortex.
    Bregnard A; Ruch F; Lutz H; Kuenzle CC
    Histochemistry; 1979 Jul; 61(3):271-9. PubMed ID: 478990
    [No Abstract]   [Full Text] [Related]  

  • 57. Nerve growth factor inhibits the synthesis of a single-stranded DNA binding protein in pheochromocytoma cells (clone PC12).
    Biocca S; Cattaneo A; Calissano P
    Proc Natl Acad Sci U S A; 1984 Apr; 81(7):2080-4. PubMed ID: 6585787
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Developmental changes in the synthesis of nonhistone nuclear proteins relative to the appearance of a short nucleosomal DNA repeat length in cerebral hemisphere neurons.
    Ivanov TR; Brown IR
    Neurochem Res; 1984 Sep; 9(9):1323-37. PubMed ID: 6504239
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Changing patterns of single-stranded-DNA-binding proteins in differentiating brain cortex and cerebellar neurons.
    Heizmann CW; Arnold EM; Kuenzle CC
    Eur J Biochem; 1982 Sep; 127(1):57-61. PubMed ID: 6897226
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of single-stranded DNA binding proteins in rat glial-enriched nuclei.
    Paul D; Marushige K
    Exp Mol Pathol; 1994 Oct; 61(2):82-96. PubMed ID: 7859831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.