These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 689736)

  • 61. Production, purification, and properties of a bacteriocin from Staphylococcus aureus isolated from saliva.
    Nakamura T; Yamazaki N; Taniguchi H; Fujimura S
    Infect Immun; 1983 Feb; 39(2):609-14. PubMed ID: 6832811
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of highly concentrated stannous fluoride and chlorhexidine regimes on human dental plaque flora.
    Schaeken MJ; De Jong MH; Franken HC; Van der Hoeven JS
    J Dent Res; 1986 Jan; 65(1):57-61. PubMed ID: 3455699
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of Piper betle fractionated extracts on inhibition of Streptococcus mutans and Streptococcus intermedius.
    Phumat P; Khongkhunthian S; Wanachantararak P; Okonogi S
    Drug Discov Ther; 2018; 12(3):133-141. PubMed ID: 29998994
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Microbiome in Populations with a Low and High Prevalence of Caries.
    Johansson I; Witkowska E; Kaveh B; Lif Holgerson P; Tanner AC
    J Dent Res; 2016 Jan; 95(1):80-6. PubMed ID: 26442950
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Evaluation of in vitro adhesion of cariogenic microorganisms to enamel and dental filling materials].
    Casas I; Liébana J; Marín A; Baca P; Navajas JM
    Av Odontoestomatol; 1989 Dec; 5(10):695-9. PubMed ID: 2640100
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect of gels containing stannous fluoride on oral bacteria--an in vitro study.
    Tseng CC; Wolff LF; Aeppli DM
    Aust Dent J; 1992 Oct; 37(5):368-73. PubMed ID: 1444958
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effects of a sub-minimum inhibitory concentration of chlorhexidine gluconate on the development of
    Suzuki Y; Ohsumi T; Isono T; Nagata R; Hasegawa T; Takenaka S; Terao Y; Noiri Y
    Biofouling; 2020 Feb; 36(2):146-158. PubMed ID: 32182151
    [TBL] [Abstract][Full Text] [Related]  

  • 68. In vitro evaluation of seven cationic detergents as antiplaque agents.
    Tanzer JM; Slee AM; Kamay B; Scheer ER
    Antimicrob Agents Chemother; 1979 Mar; 15(3):408-14. PubMed ID: 464568
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dextran-mediated interbacterial aggregation between dextran-synthesizing streptococci and Actinomyces viscosus.
    Bourgeau G; McBride BC
    Infect Immun; 1976 Apr; 13(4):1228-34. PubMed ID: 1279004
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Rat memory T lymphocytes: in vitro proliferation induced by antigens of Actinomyces viscosus.
    Burckhardt JJ
    Scand J Immunol; 1978; 7(2):167-72. PubMed ID: 306665
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Selective adsorption of heterophile polyglycerophosphate antigen from antigen extracts of Streptococcus mutans and other gram-positive bacteria.
    Hamada S; Tai S; Slade HD
    Infect Immun; 1976 Oct; 14(4):903-10. PubMed ID: 825468
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Reciprocal in vitro actions of Streptococcus mutans, Actinomyces and Veillonella: a simplified model for carbohydrate metabolism in plaque].
    Distler W; Ott K; Kröncke A
    Dtsch Zahnarztl Z; 1980 May; 35(5):548-53. PubMed ID: 6935027
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Human neutrophil migration under agarose to bacteria associated with the development of gingivitis.
    Lareau DE; Herzberg MC; Nelson RD
    J Periodontol; 1984 Sep; 55(9):540-9. PubMed ID: 6592328
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Consumption of apple-boysenberry beverage decreases salivary Actinomyces naeslundii and their adhesion in a multi-species biofilm model.
    Parkar SG; Eady S; Cabecinha M; Skinner MA
    Benef Microbes; 2017 Apr; 8(2):299-307. PubMed ID: 28403648
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Acid-regulated proteins induced by Streptococcus mutans and other oral bacteria during acid shock.
    Hamilton IR; Svensäter G
    Oral Microbiol Immunol; 1998 Oct; 13(5):292-300. PubMed ID: 9807121
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Antiaggregation potential of berry fractions against pairs of Streptococcus mutans with Fusobacterium nucleatum or Actinomyces naeslundii.
    Riihinen K; Ryynänen A; Toivanen M; Könönen E; Törrönen R; Tikkanen-Kaukanen C
    Phytother Res; 2011 Jan; 25(1):81-7. PubMed ID: 20623601
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of short-chain fatty acids on Actinomyces naeslundii biofilm formation.
    Yoneda S; Kawarai T; Narisawa N; Tuna EB; Sato N; Tsugane T; Saeki Y; Ochiai K; Senpuku H
    Mol Oral Microbiol; 2013 Oct; 28(5):354-65. PubMed ID: 23731652
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Interbacterial adherence between Actinomyces viscosus and strains of Streptococcus pyogenes, Streptococcus agalactiae, and Pseudomonas aeruginosa.
    Komiyama K; Gibbons RJ
    Infect Immun; 1984 Apr; 44(1):86-90. PubMed ID: 6423545
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Dissertations 25 years after date 21. Enhancing resistance to bacteria with chlorhexidine varnish and probiotics].
    Schaeken MJ
    Ned Tijdschr Tandheelkd; 2010 Feb; 117(2):97-101. PubMed ID: 20225702
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Plaque formation in vitro by Actinomyces viscosus in the presence of Streptococcus sanguis or Streptococcus mutans.
    Ahmed FI; Russell C
    Microbios; 1978; 23(92):93-8. PubMed ID: 42006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.