These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 689926)
21. GABA-T in bovine medulla cells: kinetic properties and comparison with GABA-T from other tissues. Fernández-Ramil JM; Sánchez-Prieto J; Cañadas S; González MP Rev Esp Fisiol; 1983 Sep; 39(3):299-303. PubMed ID: 6658145 [TBL] [Abstract][Full Text] [Related]
22. Comparative study between 4-aminobutyrate-2-oxoglutarate aminotransferase (GABA-T) from rat forebrain and cerebellum. Arce C; Cañadas S; De Vicente M; Oset-Gasque MJ; González MP Neurochem Res; 1992 Jul; 17(7):703-6. PubMed ID: 1407267 [TBL] [Abstract][Full Text] [Related]
23. Stimulatory effect of beta-estradiol treatment on GABA-degradative enzymes within rat cerebellar cortex. Cavallotti C; Iacopino L; Amenta F Neurosci Lett; 1983 Aug; 39(2):205-9. PubMed ID: 6633952 [TBL] [Abstract][Full Text] [Related]
24. A new monoclonal antibody against the GABA-protein conjugate shows immunoreactivity in sensory neurons of the rat. Szabat E; Soinila S; Häppölä O; Linnala A; Virtanen I Neuroscience; 1992; 47(2):409-20. PubMed ID: 1641131 [TBL] [Abstract][Full Text] [Related]
25. Improved histological localization of GABA-transaminase activity in rat cerebellar cortex after aldehyde fixation. Hyde JC; Robinson N Histochemistry; 1976 Feb; 46(3):261-8. PubMed ID: 2570 [TBL] [Abstract][Full Text] [Related]
26. Branched-chain amino acids and neurotransmitter metabolism: expression of cytosolic branched-chain aminotransferase (BCATc) in the cerebellum and hippocampus. Sweatt AJ; Garcia-Espinosa MA; Wallin R; Hutson SM J Comp Neurol; 2004 Sep; 477(4):360-70. PubMed ID: 15329886 [TBL] [Abstract][Full Text] [Related]
27. gamma-Aminobutyric acid inhibition of histamine-induced inositol phosphate formation in guinea-pig cerebellum: comparison with guinea-pig and rat cerebral cortex. Crawford ML; Carswell H; Young JM Br J Pharmacol; 1990 Aug; 100(4):867-73. PubMed ID: 2207505 [TBL] [Abstract][Full Text] [Related]
28. Oxo-4-methylpentanoic acid directs the metabolism of GABA into the Krebs cycle in rat pancreatic islets. Hernández-Fisac I; Fernández-Pascual S; Ortsäter H; Pizarro-Delgado J; Martín del Río R; Bergsten P; Tamarit-Rodriguez J Biochem J; 2006 Nov; 400(1):81-9. PubMed ID: 16819942 [TBL] [Abstract][Full Text] [Related]
29. Neurochemical and morphological consequences of axon terminal degeneration in cerebellar deep nuclei of mice with inherited Purkinje cell degeneration. Roffler-Tarlov S; Beart PM; O'Gorman S; Sidman RL Brain Res; 1979 May; 168(1):75-95. PubMed ID: 455087 [TBL] [Abstract][Full Text] [Related]
30. [Histochemical evidence of aminotransferases. II. Localization of aminotransferases in the medulla spinalis and metencephalon of the rat (author's transl)]. Lolova I; Dikow A Acta Histochem; 1975; 52(1):1-12. PubMed ID: 241188 [TBL] [Abstract][Full Text] [Related]
31. GABA- and glycine-like immunoreactivities in the cerebellum of the frog. Reichenberger I; Streit P; Ottersen OP; Dieringer N Neurosci Lett; 1993 May; 154(1-2):89-92. PubMed ID: 8361653 [TBL] [Abstract][Full Text] [Related]
32. Ultrastructural localization of gamma-aminobutyric acid receptors in the mammalian central nervous system by means of [3H]muscimol binding. Chan-Palay V; Palay SL Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2977-80. PubMed ID: 208082 [TBL] [Abstract][Full Text] [Related]
33. [Characteristics of the glutamate decarboxylase reaction in homogenates of various regions of the rat brain]. Rozanov VA Ukr Biokhim Zh (1978); 1987; 59(5):41-5. PubMed ID: 3686692 [TBL] [Abstract][Full Text] [Related]
34. Gamma-aminobutyrate transaminase activity in rat cerebellar cortex: a histochemical study. Hyde JC; Robinson N Brain Res; 1974 Dec; 82(1):109-16. PubMed ID: 4154800 [No Abstract] [Full Text] [Related]
35. Demonstration of extensive GABA synthesis in the small population of GAD positive neurons in cerebellar cultures by the use of pharmacological tools. Sonnewald U; Kortner TM; Qu H; Olstad E; Suñol C; Bak LK; Schousboe A; Waagepetersen HS Neurochem Int; 2006; 48(6-7):572-8. PubMed ID: 16516347 [TBL] [Abstract][Full Text] [Related]
36. Localization of gamma-aminobutyric-alpha-oxoglutaric acid transaminase in mouse brain. Waksman A; Rubinstein MK; Kuriyama K; Roberts E J Neurochem; 1968 Apr; 15(4):351-7. PubMed ID: 4295965 [No Abstract] [Full Text] [Related]
37. The histochemical localization of GABA-transaminase in the efferents of the striatum. Vincent SR; Kimura H; McGeer EG Brain Res; 1981 Oct; 222(1):198-203. PubMed ID: 7296268 [TBL] [Abstract][Full Text] [Related]
38. Studies on the GABA pathway. I. The inhibition of gamma-aminobutyric acid-alpha-ketoglutaric acid transaminase in vitro and in vivo by U-7524 (amino-oxyacetic acid). WALLACH DP Biochem Pharmacol; 1961 Feb; 5():323-31. PubMed ID: 13782815 [No Abstract] [Full Text] [Related]
39. Laminal distribution of gamma-aminobutyric acid (GABA) in the occipital cortex of rats: evidence as a neurotransmitter. Ishikawa K; Watabe S; Goto N Brain Res; 1983 Oct; 277(2):361-4. PubMed ID: 6315148 [TBL] [Abstract][Full Text] [Related]
40. Gamma-aminobutyric acid enhancement of halothane binding in rat cerebellum. Eckenhoff MF; Eckenhoff RG Neurosci Lett; 2000 Jun; 286(2):111-4. PubMed ID: 10825649 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]