These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 689994)

  • 1. Electron microscope observations on human fetal striated muscle.
    Gamble HJ; Fenton J; Allsopp G
    J Anat; 1978 Aug; 126(Pt 3):567-89. PubMed ID: 689994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron microscope observations on the changing relationships between unmyelinated axons and Schwann cells in human fetal nerves.
    Gamble HJ; Fenton J; Allsopp G
    J Anat; 1978 Oct; 127(Pt 2):363-78. PubMed ID: 721697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron microscope observations on the cytoplasmic organelles in the superior rectus oculi muscle of human fetuses [proceedings].
    Fenton J; Gamble HJ; Scheuer JL
    J Physiol; 1979 Aug; 293():14P-16P. PubMed ID: 501581
    [No Abstract]   [Full Text] [Related]  

  • 4. The structure of Schwann cells in unmyelinated fibres. A qualitative and quantitative electron microscope study.
    Pannese E; Rigamonti L; Procacci P; Ledda M; Arcidiacono G; Frattola D
    J Submicrosc Cytol Pathol; 1988 Apr; 20(2):325-33. PubMed ID: 3395971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of smooth muscle in the human fetal uterus: an ultrastructural study.
    Konishi I; Fujii S; Okamura H; Mori T
    J Anat; 1984 Sep; 139 ( Pt 2)(Pt 2):239-52. PubMed ID: 6490516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in spinal ganglia satellite and Schwann cells after aortic occlusion.
    Fercáková A; Orendácová J; Marsala J; Marossy A
    J Hirnforsch; 1983; 24(6):627-32. PubMed ID: 6672095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine structure of satellite cells in growing skeletal muscle.
    Schultz E
    Am J Anat; 1976 Sep; 147(1):49-70. PubMed ID: 970346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light- and electron microscopical studies of interstitial cells of Cajal and muscle cells at the submucosal border of human colon.
    Rumessen JJ; Peters S; Thuneberg L
    Lab Invest; 1993 Apr; 68(4):481-95. PubMed ID: 8479156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ultrastructural changes of tendon axonal profiles of medial rectus muscles according to duration in patients with intermittent exotropia.
    Kim SH; Cho YA; Park CH; Uhm CS
    Eye (Lond); 2008 Aug; 22(8):1076-81. PubMed ID: 18497836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A light and electron microscopic study of the interstitial nucleus of Cajal in rat.
    Rutherford JG; Gwyn DG
    J Comp Neurol; 1982 Mar; 205(4):327-40. PubMed ID: 7096624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comparative scanning and transmission electron microscopy studies of the ependyma of the central canal in the spinal cord of primates. I. Electron optical image of the ependyma in the central canal of the spinal cord of the callithrix monkey (Callithrix jacchus, Linné 1758)].
    Erhardt H; Meinel W
    Gegenbaurs Morphol Jahrb; 1986; 132(4):535-54. PubMed ID: 3098621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Innervation of developing intrafusal muscle fibers in the rat.
    Kucera J; Walro JM; Reichler J
    Am J Anat; 1988 Dec; 183(4):344-58. PubMed ID: 3218622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition of newly forming motor units in prenatal rat intercostal muscle.
    Sheard PW; Duxson MJ
    Dev Dyn; 1996 Feb; 205(2):196-212. PubMed ID: 8834479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraordinary synapses of the unipolar brush cell: an electron microscopic study in the rat cerebellum.
    Mugnaini E; Floris A; Wright-Goss M
    Synapse; 1994 Apr; 16(4):284-311. PubMed ID: 8059339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electron microscopic study of the pericytes of the developing capillaries in human fetal brain and muscle.
    Allsopp G; Gamble HJ
    J Anat; 1979 Jan; 128(Pt 1):155-68. PubMed ID: 422476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regenerating axons are not required to induce the formation of a Schwann cell cable in a silicone chamber.
    Williams LR; Azzam NA; Zalewski AA; Azzam RN
    Exp Neurol; 1993 Mar; 120(1):49-59. PubMed ID: 8477828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructural study of extraocular muscle tendon axonal profiles in infantile and intermittent exotropia.
    Kim SH; Yi ST; Cho YA; Uhm CS
    Acta Ophthalmol Scand; 2006 Apr; 84(2):182-7. PubMed ID: 16637833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Denervation of skin in neuropathies: the sequence of axonal and Schwann cell changes in skin biopsies.
    Ebenezer GJ; McArthur JC; Thomas D; Murinson B; Hauer P; Polydefkis M; Griffin JW
    Brain; 2007 Oct; 130(Pt 10):2703-14. PubMed ID: 17898011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field emission SEM, conventional TEM and HVTEM study of submandibular gland in prenatal and postnatal aging mouse.
    Watanabe I; Jin C; Nagata T
    Histol Histopathol; 1997 Apr; 12(2):447-57. PubMed ID: 9151134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axo-axonic chandelier cells in the rat fascia dentata: Golgi-electron microscopy and immunocytochemical studies.
    Soriano E; Nitsch R; Frotscher M
    J Comp Neurol; 1990 Mar; 293(1):1-25. PubMed ID: 1690225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.