These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 690098)

  • 21. Conventional spectrophotometric studies on turkey liver xanthine dehydrogenase. Slow phases in the reaction with reducing substrates.
    Fhaoláin IN; Coughlan MP
    Proc R Ir Acad B; 1979; 79(8):111-22. PubMed ID: 504145
    [No Abstract]   [Full Text] [Related]  

  • 22. Iron-sulphur systems in some isolated multi-component oxidative enzymes.
    Bray RC; Barber MJ; Dalton H; Lowe DJ; Coughlan MP
    Biochem Soc Trans; 1975; 3(4):479-82. PubMed ID: 1237425
    [No Abstract]   [Full Text] [Related]  

  • 23. Effects of limited proteolysis on the structure and activity of turkey liver xanthine dehydrogenase [proceedings].
    Fháolain IN; Coughlan MP
    Biochem Soc Trans; 1977; 5(6):1705-7. PubMed ID: 563810
    [No Abstract]   [Full Text] [Related]  

  • 24. Synthesis and degradation of xanthine dehydrogenase in chick liver. In vivo and in vitro studies.
    Thompson JM; Nickels JS; Fisher JR
    Biochim Biophys Acta; 1979 May; 568(1):157-76. PubMed ID: 444541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for the existence of a tyrosyl residue in the nicotinamide adenine dinucleotide binding site of chicken liver xanthine dehydrogenase.
    Nishino T; Nishino T
    Biochemistry; 1987 Jun; 26(11):3068-72. PubMed ID: 3475129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid reaction studies on the reduction and oxidation of chicken liver xanthine dehydrogenase by the xanthine/urate and NAD/NADH couples.
    Schopfer LM; Massey V; Nishino T
    J Biol Chem; 1988 Sep; 263(27):13528-38. PubMed ID: 3166459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidation--reduction potentials of turkey liver xanthine dehydrogenase and the origins of oxidase and dehydrogenase behaviour in molybdenum-containing hydroxylases.
    Barber MJ; Bray RC; Cammack R; Coughlan MP
    Biochem J; 1977 May; 163(2):279-89. PubMed ID: 869927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Turkey liver xanthine dehydrogenase: effects of methanol on the enzyme-catalysed oxidation of reduced nicotinamide-adenine dinucleotide.
    Fhaoláin IN; Hynes MJ; Coughlan CP
    Biochem Soc Trans; 1976; 4(5):901-3. PubMed ID: 187502
    [No Abstract]   [Full Text] [Related]  

  • 29. Nutritional control of xanthine dehydrogenase. II. Effects on xanthine dehydrogenase and aldehyde oxidase of culturing wild-type and mutant Drosophila on different levels of molybdenum.
    Duke EJ; Rushing DR; Glassman E
    Biochem Genet; 1975 Feb; 13(1-2):53-64. PubMed ID: 806286
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Turkey liver xanthine dehydrogenase. Relation between nicotinamide-adenine dinucleotide oxidoreductase activity and the content of functional enzyme.
    Fhaoláin IN; Coughlan MP
    Biochem J; 1976 Jul; 157(1):283-5. PubMed ID: 962863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Urate oxidase and xanthine dehydrogenase activities in liver extracts from fish caught in Irish waters.
    Cleare WF; Bree S; Coughlan MP
    Comp Biochem Physiol B; 1976; 54(1):117-9. PubMed ID: 1269224
    [No Abstract]   [Full Text] [Related]  

  • 32. The reactivity of chicken liver xanthine dehydrogenase with molecular oxygen.
    Nishino T; Nishino T; Schopfer LM; Massey V
    J Biol Chem; 1989 Feb; 264(5):2518-27. PubMed ID: 2914919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of vitamin E deficiency on tissue lead deposition and on hepatic xanthine dehydrogenase activity in the mallard duck.
    Sleet RB; Soares JH
    Proc West Pharmacol Soc; 1978; 21():481-2. PubMed ID: 693537
    [No Abstract]   [Full Text] [Related]  

  • 34. The kinetic mechanism of xanthine dehydrogenase and related enzymes.
    Coughlan MP; Rajagopalan KV
    Eur J Biochem; 1980 Mar; 105(1):81-4. PubMed ID: 6929250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dietary influences on the activities of enzymes involved in branched-chain amino acid catabolism in the chick.
    Featherston WR; Horn GW
    J Nutr; 1973 May; 103(5):757-65. PubMed ID: 4736280
    [No Abstract]   [Full Text] [Related]  

  • 36. The interaction of arsenite with the molybdenum center of chicken liver xanthine dehydrogenase.
    Johnson JL; Rajagopalan KV
    Bioinorg Chem; 1978; 8(5):439-44. PubMed ID: 210844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of nitrogen catabolic enzymes in chick liver: effects of insulin.
    Wu JM; Nickels JS; Fisher JR
    Enzyme; 1977; 22(1):60-9. PubMed ID: 13991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron paramagnetic resonance properties and oxidation-reduction potentials of the molybdenum, flavin, and iron-sulfur centers of chicken liver xanthine dehydrogenase.
    Barber MJ; Coughlan MP; Kanda M; Rajagopalan KV
    Arch Biochem Biophys; 1980 May; 201(2):468-75. PubMed ID: 6249208
    [No Abstract]   [Full Text] [Related]  

  • 39. [Comparative study of chicken liver xanthine dehydrogenase and bovine liver xanthine oxidase. dehydrogenase activity of xanthine oxidase (author's transl)].
    Canela E; Bozal J
    Rev Esp Fisiol; 1979 Mar; 35(1):51-62. PubMed ID: 37557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification and properties of the NAD+-dependent (type D) and O2-dependent (type O) forms of rat liver xanthine dehydrogenase.
    Waud WR; Rajagopalan KV
    Arch Biochem Biophys; 1976 Feb; 172(2):354-64. PubMed ID: 176939
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.