BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6901505)

  • 1. Binding of terbium to porcine pancreatic elastase. Ligand-induced changes in the stability, the maximum luminescence intensity, and the circularly polarized luminescence spectrum of the complex.
    Duportail G; Lefevre JF; Lestienne P; Dimicoli JL; Bieth JG
    Biochemistry; 1980 Apr; 19(7):1377-82. PubMed ID: 6901505
    [No Abstract]   [Full Text] [Related]  

  • 2. Lanthanide probes in biological systems: the calcium binding site of pancreatic elastase as studied by terbium luminescence.
    de Jersey J; Martin RB
    Biochemistry; 1980 Mar; 19(6):1127-32. PubMed ID: 6899954
    [No Abstract]   [Full Text] [Related]  

  • 3. Binding of terbium and of an elastase inhibitor to bovine pancreatic subunit III, an inactive protease E.
    Chapus C; Kerfelec B; Dimicoli JL
    J Biol Chem; 1990 Mar; 265(7):3726-30. PubMed ID: 2303477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen quenching of sensitized terbium luminescence in complexes of terbium with small organic ligands and proteins.
    Prendergast FG; Lu J; Callahan PJ
    J Biol Chem; 1983 Apr; 258(7):4075-8. PubMed ID: 6187734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the mechanism of energy transfer to Tb3+ ions in proteins. A time-resolved luminescence study of the Tb-elastase complex.
    Martini JL; Tetreau C; Pochon F; Tourbez H; Lentz JM; Lavalette D
    Eur J Biochem; 1993 Feb; 211(3):467-73. PubMed ID: 8436108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arginine modification in elastase. Effect on catalytic activity and conformation of the calcium-binding site.
    Davril M; Jung ML; Duportail G; Lohez M; Han KK; Bieth JG
    J Biol Chem; 1984 Mar; 259(6):3851-7. PubMed ID: 6561199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of protein--ligand interactions: the complex of porcine pancreatic elastase with a valine-derived benzoxazinone.
    Presta LG; Meyer EF
    Biopolymers; 1987 Aug; 26(8):1207-25. PubMed ID: 3663857
    [No Abstract]   [Full Text] [Related]  

  • 8. Optical activity of terbium ions bound to transferrin and conalbumin studied by circular polarization of luminescence.
    Gafni A; Steinberg IZ
    Biochemistry; 1974 Feb; 13(4):800-3. PubMed ID: 4811068
    [No Abstract]   [Full Text] [Related]  

  • 9. The covalent and non-covalent binding modes of elastase with alpha 2-macroglobulin influence the conformation of the protease.
    Dexpert J; Delain E; Piriou B; Pochon F
    FEBS Lett; 1987 Dec; 225(1-2):223-7. PubMed ID: 2446921
    [No Abstract]   [Full Text] [Related]  

  • 10. Analysis of an enzyme-substrate complex by X-ray crystallography and transferred nuclear Overhauser enhancement measurements: porcine pancreatic elastase and a hexapeptide.
    Meyer EF; Clore GM; Gronenborn AM; Hansen HA
    Biochemistry; 1988 Jan; 27(2):725-30. PubMed ID: 3349061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circularly polarized luminescence from terbium(III) as a probe of metal ion binding in calcium-binding proteins.
    Coruh N; Riehl JP
    Biochemistry; 1992 Sep; 31(34):7970-6. PubMed ID: 1510984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terbium luminescence as a probe of the calcium binding site of trypsin and alpha-chymotrypsin.
    De Jersey J; Lahue RS; Martin RB
    Arch Biochem Biophys; 1980 Dec; 205(2):536-42. PubMed ID: 7193433
    [No Abstract]   [Full Text] [Related]  

  • 13. Luminescence and circular-dichroism analysis of terbium binding by pig intestinal calcium-binding protein (relative mass = 9000).
    O'Neil JD; Dorrington KJ; Hofmann T
    Can J Biochem Cell Biol; 1984 Jun; 62(6):434-42. PubMed ID: 6432301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anhydroelastase: enhanced affinity toward product-type ligands revealed by affinity chromatography.
    Kumazaki T; Kobayashi M; Ishii S
    J Mol Recognit; 1988 Apr; 1(2):93-8. PubMed ID: 3273656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human leukocyte and porcine pancreatic elastase: X-ray crystal structures, mechanism, substrate specificity, and mechanism-based inhibitors.
    Bode W; Meyer E; Powers JC
    Biochemistry; 1989 Mar; 28(5):1951-63. PubMed ID: 2655701
    [No Abstract]   [Full Text] [Related]  

  • 16. Purification and characterization of porcine elastase II and investigation of its elastolytic specificity.
    Gertler A; Weiss Y; Burstein Y
    Biochemistry; 1977 Jun; 16(12):2709-15. PubMed ID: 889784
    [No Abstract]   [Full Text] [Related]  

  • 17. Investigation of the active center of rat pancreatic elastase.
    Bieth JG; Dirrig S; Jung ML; Boudier C; Papamichael E; Sakarellos C; Dimicoli JL
    Biochim Biophys Acta; 1989 Jan; 994(1):64-74. PubMed ID: 2909256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and biological properties of a rabbit antibody to porcine pancreatic elastase and its use as ligand for elastase purification.
    Rabaud M; Lamazière JM; Mazat JP; Bricaud H
    Connect Tissue Res; 1980; 7(2):97-103. PubMed ID: 6444568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of an elastase-specific inhibitor elafin complexed with porcine pancreatic elastase determined at 1.9 A resolution.
    Tsunemi M; Matsuura Y; Sakakibara S; Katsube Y
    Biochemistry; 1996 Sep; 35(36):11570-6. PubMed ID: 8794736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity of porcine pancreatic elastase, human leukocyte elastase and cathepsin G. Inhibition with peptide chloromethyl ketones.
    Powers JC; Gupton BF; Harley AD; Nishino N; Whitley RJ
    Biochim Biophys Acta; 1977 Nov; 485(1):156-66. PubMed ID: 562189
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.