These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 690268)

  • 1. Observations on the development of brainstem-spinal systems in the North American oppossum.
    Martin GF; Beals JK; Culberson JL; Dom R; Goode G; Humbertson AO
    J Comp Neurol; 1978 Sep; 181(2):271-89. PubMed ID: 690268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of catecholaminergic projections to the spinal cord in the North American opossum, Didelphis virginiana.
    Pindzola RR; Ho RH; Martin GF
    J Comp Neurol; 1990 Apr; 294(3):399-417. PubMed ID: 1971285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of brainstem and cerebellar projections to the diencephalon with notes on thalamocortical projections: studies in the North American opossum.
    Martin GF; Cabana T; Hazlett JC; Ho R; Waltzer R
    J Comp Neurol; 1987 Jun; 260(2):186-200. PubMed ID: 3038968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of projections from somatic motor-sensory areas of neocortex to the diencephalon and brainstem in the North American opossum.
    Cabana T; Martin GF
    J Comp Neurol; 1986 Sep; 251(4):506-16. PubMed ID: 2431011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of monoaminergic brainstem-spinal systems in the North American opossum.
    Humbertson AO; Martin GF
    Anat Embryol (Berl); 1979 Jul; 156(3):301-18. PubMed ID: 475000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental plasticity of the rubrospinal tract in the North American opossum.
    Xu XM; Martin GF
    J Comp Neurol; 1989 Jan; 279(3):368-81. PubMed ID: 2465321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal cord development in anuran larvae: II. Ascending and descending pathways.
    Forehand CJ; Farel PB
    J Comp Neurol; 1982 Aug; 209(4):395-408. PubMed ID: 6982288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The early development of major projections from caudal levels of the spinal cord to the brainstem and cerebellum in the gray short-tailed Brazilian opossum, Monodelphis domestica.
    Qin YQ; Wang XM; Martin GF
    Brain Res Dev Brain Res; 1993 Sep; 75(1):75-90. PubMed ID: 7693371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early development and developmental plasticity of the fasciculus gracilis in the North American opossum (Didelphis virginiana).
    Wang XM; Qin YQ; Terman JR; Martin GF
    Brain Res Dev Brain Res; 1997 Feb; 98(2):151-63. PubMed ID: 9051256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the spinocerebellar system in the postnatal rat.
    Arsénio Nunes ML; Sotelo C
    J Comp Neurol; 1985 Jul; 237(3):291-306. PubMed ID: 3840179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regenerating and sprouting axons differ in their requirements for growth after injury.
    Bernstein-Goral H; Diener PS; Bregman BS
    Exp Neurol; 1997 Nov; 148(1):51-72. PubMed ID: 9398450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observations on the early development of ascending spinal pathways. Studies using the North American opossum.
    Martin GF; Culberson JL; Hazlett JC
    Anat Embryol (Berl); 1983; 166(2):191-207. PubMed ID: 6846856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of supraspinal axons after complete transection of the thoracic spinal cord in neonatal opossums (Monodelphis domestica).
    Fry EJ; Stolp HB; Lane MA; Dziegielewska KM; Saunders NR
    J Comp Neurol; 2003 Nov; 466(3):422-44. PubMed ID: 14556298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raphespinal projections in the North American opossum: evidence for connectional heterogeneity.
    Martin GF; Cabana T; Ditirro FJ; Ho RH; Humbertson AO
    J Comp Neurol; 1982 Jun; 208(1):67-84. PubMed ID: 6749912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of descending spinal axons after transection of the thoracic spinal cord during early development in the North American opossum, Didelphis virginiana.
    Martin GF; Terman JR; Wang XM
    Brain Res Bull; 2000 Nov; 53(5):677-87. PubMed ID: 11165803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The serotoninergic bulbospinal system and brainstem-spinal cord content of serotonin-, TRH-, and substance P-like immunoreactivity in the aged rat with special reference to the spinal cord motor nucleus.
    Johnson H; Ulfhake B; Dagerlind A; Bennett GW; Fone KC; Hökfelt T
    Synapse; 1993 Sep; 15(1):63-89. PubMed ID: 7508641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for new growth and regeneration of cut axons in developmental plasticity of the rubrospinal tract in the North American opossum.
    Xu XM; Martin GF
    J Comp Neurol; 1991 Nov; 313(1):103-12. PubMed ID: 1761748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptogenesis in the brachial and lumbosacral enlargements of the spinal cord in the postnatal opossum, Monodelphis domestica.
    Gingras J; Cabana T
    J Comp Neurol; 1999 Nov; 414(4):551-60. PubMed ID: 10531545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regeneration of supraspinal axons after transection of the thoracic spinal cord in the developing opossum, Didelphis virginiana.
    Wang XM; Terman JR; Martin GF
    J Comp Neurol; 1998 Aug; 398(1):83-97. PubMed ID: 9703028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of mammalian motor systems: the opossum Monodelphis domestica as a model.
    Cabana T
    Brain Res Bull; 2000 Nov; 53(5):615-26. PubMed ID: 11165797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.