These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 690634)

  • 21. The retinal cells generating the circadian small spikes in the Bulla optic nerve.
    Geusz ME; Block GD
    J Biol Rhythms; 1992; 7(3):255-68. PubMed ID: 1384806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia.
    Jacklet JW
    Science; 1969 May; 164(3879):562-3. PubMed ID: 5778006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase shifting the circadian rhythm of neuronal activity in the isolated Aplysia eye with puromycin and cycloheximide. Electrophysiological and biochemical studies.
    Rothman BS; Strumwasser F
    J Gen Physiol; 1976 Oct; 68(4):359-84. PubMed ID: 993764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aplysia eye: modulation by efferent optic nerve activity.
    Luborsky-Moore JL; Jacklet JW
    Brain Res; 1976 Oct; 115(3):501-5. PubMed ID: 974758
    [No Abstract]   [Full Text] [Related]  

  • 25. Optical measurement of action potential activity in invertebrate ganglia.
    Cohen L; Höpp HP; Wu JY; Xiao C; London J
    Annu Rev Physiol; 1989; 51():527-41. PubMed ID: 2653195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Circadian rhythm from the eye of Aplysia: temperature compensation of the effects of protein synthesis inhibitors.
    Jacklet JW
    J Exp Biol; 1980 Feb; 84():1-15. PubMed ID: 7365411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radial propagation of muscle action potential along the tubular system examined by potential-sensitive dyes.
    Nakajima S; Gilai A
    J Gen Physiol; 1980 Dec; 76(6):751-62. PubMed ID: 10822502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro resetting of the circadian clock in the Aplysia eye. II. The critical period for optic nerve activity.
    Prichard RG; Lickey ME
    J Neurosci; 1981 Aug; 1(8):840-5. PubMed ID: 7346588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo recording of the ocular circadian rhythm in Aplysia.
    Block GD
    Brain Res; 1981 Oct; 222(1):138-43. PubMed ID: 7296259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging nervous system activity with voltage-sensitive dyes.
    Zecevic D; Djurisic M; Cohen LB; Antic S; Wachowiak M; Falk CX; Zochowski MR
    Curr Protoc Neurosci; 2003 Aug; Chapter 6():Unit 6.17. PubMed ID: 18428582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calcium plays a central role in phase shifting the ocular circadian pacemaker of Aplysia.
    Colwell CS; Whitmore D; Michel S; Block GD
    J Comp Physiol A; 1994 Oct; 175(4):415-23. PubMed ID: 7965916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Internal desynchronization between two identified circadian oscillators in Aplysia.
    Hudson DJ; Lickey ME
    Brain Res; 1980 Feb; 183(2):481-5. PubMed ID: 7353154
    [No Abstract]   [Full Text] [Related]  

  • 33. The differential effects of ionizing radiation on the circadian oscillator and other functions in the eye of Aplysia.
    Woolum JC; Strumwasser F
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5542-6. PubMed ID: 6933570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light and serotonin interact in affecting the circadian system of Aplysia.
    Colwell CS
    J Comp Physiol A; 1990 Dec; 167(6):841-5. PubMed ID: 2086792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spontaneous and light-induced compound action potentials in the isolated eye of Aplysia: initiation and synchronization.
    Audesirk G
    Brain Res; 1973 Sep; 59():229-42. PubMed ID: 4355884
    [No Abstract]   [Full Text] [Related]  

  • 36. Imaging membrane potential in dendrites and axons of single neurons.
    Stuart GJ; Palmer LM
    Pflugers Arch; 2006 Dec; 453(3):403-10. PubMed ID: 17001494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging.
    Graf BW; Ralston TS; Ko HJ; Boppart SA
    Opt Express; 2009 Aug; 17(16):13447-57. PubMed ID: 19654752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical monitoring of activity of many neurons in invertebrate ganglia during behaviors.
    Wu JY; London JA; Zecevic D; Höpp HP; Cohen LB; Xiao C
    Experientia; 1988 May; 44(5):369-76. PubMed ID: 3286282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical measurements of potential changes in axons and processes of neurons of a barnacle ganglion.
    Ross WN; Krauthamer V
    J Neurosci; 1984 Mar; 4(3):659-72. PubMed ID: 6707730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Noninvasive detection of changes in membrane potential in cultured neurons by light scattering.
    Stepnoski RA; LaPorta A; Raccuia-Behling F; Blonder GE; Slusher RE; Kleinfeld D
    Proc Natl Acad Sci U S A; 1991 Nov; 88(21):9382-6. PubMed ID: 1946349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.