These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 690839)

  • 21. Shear distribution and variability in the USP Apparatus 2 under turbulent conditions.
    Kukura J; Baxter JL; Muzzio FJ
    Int J Pharm; 2004 Jul; 279(1-2):9-17. PubMed ID: 15234789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulating the hydrodynamic conditions in the United States Pharmacopeia paddle dissolution apparatus.
    McCarthy LG; Kosiol C; Healy AM; Bradley G; Sexton JC; Corrigan OI
    AAPS PharmSciTech; 2003; 4(2):E22. PubMed ID: 12916904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrodynamic and species transfer simulations in the USP 4 dissolution apparatus: considerations for dissolution in a low velocity pulsing flow.
    D'Arcy DM; Liu B; Bradley G; Healy AM; Corrigan OI
    Pharm Res; 2010 Feb; 27(2):246-58. PubMed ID: 20012167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FIP position paper on qualification of paddle and basket dissolution apparatus.
    Brown CK; Buhse L; Friedel HD; Keitel S; Kraemer J; Morris JM; Stickelmeyer M; Yomota C; Shah VP;
    AAPS PharmSciTech; 2009; 10(3):924-7. PubMed ID: 19609681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Velocity Field Visualization in USP Dissolution Apparatus 3 Using Particle Image Velocimetry.
    Perivilli S; Prevost R; Stippler E
    Pharm Res; 2017 Jun; 34(6):1330-1337. PubMed ID: 28409325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the Hydrodynamics in the USP Basket Apparatus Using Computational Fluid Dynamics.
    Martinez AF; Sinha K; Nere N; Slade R; Castleberry S
    J Pharm Sci; 2020 Mar; 109(3):1231-1241. PubMed ID: 31743682
    [TBL] [Abstract][Full Text] [Related]  

  • 27. USP dissolution III: semilogarithmic dissolution patterns of tablets in rotating-basket assemblies.
    Carstensen JT; Wright JL; Blessel K; Sheridan J
    J Pharm Sci; 1978 Jul; 67(7):982-4. PubMed ID: 660522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro release of ketoprofen suppositories using the USP basket and the flow-through cell dissolution methods.
    Medina JR; Padilla AR; Hurtado M; Cortés AR; Domínguez-Ramírez AM
    Pak J Pharm Sci; 2014 May; 27(3):453-8. PubMed ID: 24811800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparative study of BP and USP rotating basket dissolution apparatus.
    Smith WJ; Heaume PE; Hailey DM; Lea AR
    J Pharm Pharmacol; 1985 Feb; 37(2):124-5. PubMed ID: 2858545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding the impact of media viscosity on dissolution of a highly water soluble drug within a USP 2 mini vessel dissolution apparatus using an optical planar induced fluorescence (PLIF) method.
    Stamatopoulos K; Batchelor HK; Alberini F; Ramsay J; Simmons MJH
    Int J Pharm; 2015 Nov; 495(1):362-373. PubMed ID: 26363111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro dissolution models for the prediction of in vivo performance of an oral mesoporous silica formulation.
    McCarthy CA; Faisal W; O'Shea JP; Murphy C; Ahern RJ; Ryan KB; Griffin BT; Crean AM
    J Control Release; 2017 Mar; 250():86-95. PubMed ID: 28132935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of USP apparatus 1 and 2 at different rotational speeds on dissolution of niacin formulations.
    Kirchhoefer RD; Hamilton JF
    J AOAC Int; 1996; 79(4):1005-8. PubMed ID: 8757459
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic Approach to Understanding the Influence of USP Apparatus I and II on Dissolution Kinetics of Tablets with Different Operating Release Mechanisms.
    Lu Z; Fassihi R
    AAPS PharmSciTech; 2017 Feb; 18(2):462-472. PubMed ID: 27106916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of hydrodynamics in the basket dissolution apparatus using computational fluid dynamics--dissolution rate implications.
    D'Arcy DM; Corrigan OI; Healy AM
    Eur J Pharm Sci; 2006 Feb; 27(2-3):259-67. PubMed ID: 16314078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vibration effects of lab equipment on dissolution testing with USP paddle method.
    Gao Z; Thies A; Doub W
    J Pharm Sci; 2010 Jan; 99(1):403-12. PubMed ID: 19544371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The science of USP 1 and 2 dissolution: present challenges and future relevance.
    Gray V; Kelly G; Xia M; Butler C; Thomas S; Mayock S
    Pharm Res; 2009 Jun; 26(6):1289-302. PubMed ID: 19165579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of basket mesh size on the hydrodynamics in the USP rotating basket dissolution testing Apparatus 1.
    Sirasitthichoke C; Patel S; Reuter KG; Hermans A; Bredael G; Armenante PM
    Int J Pharm; 2021 Sep; 607():120976. PubMed ID: 34363918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro evaluation of three commercial sustained-release papaverine hydrochloride products.
    Timko RJ; Lordi NG
    J Pharm Sci; 1978 Apr; 67(4):496-500. PubMed ID: 25329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using USP I and USP IV for discriminating dissolution rates of nano- and microparticle-loaded pharmaceutical strip-films.
    Sievens-Figueroa L; Pandya N; Bhakay A; Keyvan G; Michniak-Kohn B; Bilgili E; Davé RN
    AAPS PharmSciTech; 2012 Dec; 13(4):1473-82. PubMed ID: 23090112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Velocity profiles and shear strain rate variability in the USP Dissolution Testing Apparatus 2 at different impeller agitation speeds.
    Bai G; Wang Y; Armenante PM
    Int J Pharm; 2011 Jan; 403(1-2):1-14. PubMed ID: 20883758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.