BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 691074)

  • 1. The evolution of protein sequences by repetitious gene duplication: clostridial flavodoxin.
    Kobayashi K; Fox JL
    J Mol Evol; 1978 Aug; 11(3):233-43. PubMed ID: 691074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical synthesis and expression of a synthetic gene for the flavodoxin from Clostridium MP.
    Eren M; Swenson RP
    J Biol Chem; 1989 Sep; 264(25):14874-9. PubMed ID: 2670927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The base sequence of the nifF gene of Klebsiella pneumoniae and homology of the predicted amino acid sequence of its protein product to other flavodoxins.
    Drummond MH
    Biochem J; 1985 Dec; 232(3):891-6. PubMed ID: 3911951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADPH-cytochrome P-450 oxidoreductase: flavin mononucleotide and flavin adenine dinucleotide domains evolved from different flavoproteins.
    Porter TD; Kasper CB
    Biochemistry; 1986 Apr; 25(7):1682-7. PubMed ID: 3085707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational energetics of a reverse turn in the Clostridium beijerinckii flavodoxin is directly coupled to the modulation of its oxidation-reduction potentials.
    Kasim M; Swenson RP
    Biochemistry; 2000 Dec; 39(50):15322-32. PubMed ID: 11112518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation, sequence analysis, and transcriptional studies of the flavodoxin gene from Anacystis nidulans R2.
    Laudenbach DE; Reith ME; Straus NA
    J Bacteriol; 1988 Jan; 170(1):258-65. PubMed ID: 3121586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The primary structures of the flavodoxins from two strains of Desulfovibrio gigas. Cloning and nucleotide sequence of the structural genes.
    Helms LR; Swenson RP
    Biochim Biophys Acta; 1992 Jul; 1131(3):325-8. PubMed ID: 1627649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification, sequence determination, and expression of the flavodoxin gene from Desulfovibrio salexigens.
    Helms LR; Krey GD; Swenson RP
    Biochem Biophys Res Commun; 1990 Apr; 168(2):809-17. PubMed ID: 2334437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons of wild-type and mutant flavodoxins from Anacystis nidulans. Structural determinants of the redox potentials.
    Hoover DM; Drennan CL; Metzger AL; Osborne C; Weber CH; Pattridge KA; Ludwig ML
    J Mol Biol; 1999 Dec; 294(3):725-43. PubMed ID: 10610792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative carbon-13, nitrogen-15, and phosphorus-31 nuclear magnetic resonance study on the flavodoxins from Clostridium MP, Megasphaera elsdenii, and Azotobacter vinelandii.
    Vervoort J; Müller F; Mayhew SG; van den Berg WA; Moonen CT; Bacher A
    Biochemistry; 1986 Nov; 25(22):6789-99. PubMed ID: 3801391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of methionine 56 in the control of the oxidation-reduction potentials of the Clostridium beijerinckii flavodoxin: effects of substitutions by aliphatic amino acids and evidence for a role of sulfur-flavin interactions.
    Druhan LJ; Swenson RP
    Biochemistry; 1998 Jul; 37(27):9668-78. PubMed ID: 9657679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nucleotide sequence of a flavodoxin-like gene which precedes two ferredoxin genes in Rhodobacter capsulatus.
    Jouanneau Y; Richaud P; Grabau C
    Nucleic Acids Res; 1990 Sep; 18(17):5284. PubMed ID: 2402451
    [No Abstract]   [Full Text] [Related]  

  • 13. The amino acid sequence of a flavodoxin from the eukaryotic red alga Chondrus crispus.
    Wakabayashi S; Kimura T; Fukuyama K; Matsubara H; Rogers LJ
    Biochem J; 1989 Nov; 263(3):981-4. PubMed ID: 2597140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The midpoint potentials for the oxidized-semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced flavin mononucleotide cofactor as measured by NMR chemical shift temperature dependencies.
    Chang FC; Swenson RP
    Biochemistry; 1999 Jun; 38(22):7168-76. PubMed ID: 10353827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and chemical properties of a flavodoxin from Anabaena PCC 7119.
    Fillat MF; Edmondson DE; Gomez-Moreno C
    Biochim Biophys Acta; 1990 Sep; 1040(2):301-7. PubMed ID: 2119231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of substituting asparagine for glycine-61 in flavodoxin from Desulfovibrio vulgaris (Hildenborough).
    Carr MC; Curley GP; Mayhew SG; Voordouw G
    Biochem Int; 1990; 20(6):1025-32. PubMed ID: 2369409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence of the flavodoxin gene from Anabaena variabilis 7120.
    Leonhardt KG; Straus NA
    Nucleic Acids Res; 1989 Jun; 17(11):4384. PubMed ID: 2500643
    [No Abstract]   [Full Text] [Related]  

  • 18. Role of glutamate-59 hydrogen bonded to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Glutamate-59 is not responsible for the pH dependency but contributes to the stabilization of the flavin semiquinone.
    Bradley LH; Swenson RP
    Biochemistry; 1999 Sep; 38(38):12377-86. PubMed ID: 10493805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavodoxin-cytochrome c interactions: circular dichroism and nuclear magnetic resonance studies.
    Tollin G; Brown K; De Francesco R; Edmondson DE
    Biochemistry; 1987 Aug; 26(16):5042-8. PubMed ID: 2822104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes.
    Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP
    Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.