These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 691074)
1. The evolution of protein sequences by repetitious gene duplication: clostridial flavodoxin. Kobayashi K; Fox JL J Mol Evol; 1978 Aug; 11(3):233-43. PubMed ID: 691074 [TBL] [Abstract][Full Text] [Related]
2. Chemical synthesis and expression of a synthetic gene for the flavodoxin from Clostridium MP. Eren M; Swenson RP J Biol Chem; 1989 Sep; 264(25):14874-9. PubMed ID: 2670927 [TBL] [Abstract][Full Text] [Related]
3. The base sequence of the nifF gene of Klebsiella pneumoniae and homology of the predicted amino acid sequence of its protein product to other flavodoxins. Drummond MH Biochem J; 1985 Dec; 232(3):891-6. PubMed ID: 3911951 [TBL] [Abstract][Full Text] [Related]
4. NADPH-cytochrome P-450 oxidoreductase: flavin mononucleotide and flavin adenine dinucleotide domains evolved from different flavoproteins. Porter TD; Kasper CB Biochemistry; 1986 Apr; 25(7):1682-7. PubMed ID: 3085707 [TBL] [Abstract][Full Text] [Related]
5. Conformational energetics of a reverse turn in the Clostridium beijerinckii flavodoxin is directly coupled to the modulation of its oxidation-reduction potentials. Kasim M; Swenson RP Biochemistry; 2000 Dec; 39(50):15322-32. PubMed ID: 11112518 [TBL] [Abstract][Full Text] [Related]
6. Isolation, sequence analysis, and transcriptional studies of the flavodoxin gene from Anacystis nidulans R2. Laudenbach DE; Reith ME; Straus NA J Bacteriol; 1988 Jan; 170(1):258-65. PubMed ID: 3121586 [TBL] [Abstract][Full Text] [Related]
7. The primary structures of the flavodoxins from two strains of Desulfovibrio gigas. Cloning and nucleotide sequence of the structural genes. Helms LR; Swenson RP Biochim Biophys Acta; 1992 Jul; 1131(3):325-8. PubMed ID: 1627649 [TBL] [Abstract][Full Text] [Related]
8. Identification, sequence determination, and expression of the flavodoxin gene from Desulfovibrio salexigens. Helms LR; Krey GD; Swenson RP Biochem Biophys Res Commun; 1990 Apr; 168(2):809-17. PubMed ID: 2334437 [TBL] [Abstract][Full Text] [Related]
9. Comparisons of wild-type and mutant flavodoxins from Anacystis nidulans. Structural determinants of the redox potentials. Hoover DM; Drennan CL; Metzger AL; Osborne C; Weber CH; Pattridge KA; Ludwig ML J Mol Biol; 1999 Dec; 294(3):725-43. PubMed ID: 10610792 [TBL] [Abstract][Full Text] [Related]
10. A comparative carbon-13, nitrogen-15, and phosphorus-31 nuclear magnetic resonance study on the flavodoxins from Clostridium MP, Megasphaera elsdenii, and Azotobacter vinelandii. Vervoort J; Müller F; Mayhew SG; van den Berg WA; Moonen CT; Bacher A Biochemistry; 1986 Nov; 25(22):6789-99. PubMed ID: 3801391 [TBL] [Abstract][Full Text] [Related]
11. Role of methionine 56 in the control of the oxidation-reduction potentials of the Clostridium beijerinckii flavodoxin: effects of substitutions by aliphatic amino acids and evidence for a role of sulfur-flavin interactions. Druhan LJ; Swenson RP Biochemistry; 1998 Jul; 37(27):9668-78. PubMed ID: 9657679 [TBL] [Abstract][Full Text] [Related]
12. The nucleotide sequence of a flavodoxin-like gene which precedes two ferredoxin genes in Rhodobacter capsulatus. Jouanneau Y; Richaud P; Grabau C Nucleic Acids Res; 1990 Sep; 18(17):5284. PubMed ID: 2402451 [No Abstract] [Full Text] [Related]
13. The amino acid sequence of a flavodoxin from the eukaryotic red alga Chondrus crispus. Wakabayashi S; Kimura T; Fukuyama K; Matsubara H; Rogers LJ Biochem J; 1989 Nov; 263(3):981-4. PubMed ID: 2597140 [TBL] [Abstract][Full Text] [Related]
14. The midpoint potentials for the oxidized-semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced flavin mononucleotide cofactor as measured by NMR chemical shift temperature dependencies. Chang FC; Swenson RP Biochemistry; 1999 Jun; 38(22):7168-76. PubMed ID: 10353827 [TBL] [Abstract][Full Text] [Related]
15. Structural and chemical properties of a flavodoxin from Anabaena PCC 7119. Fillat MF; Edmondson DE; Gomez-Moreno C Biochim Biophys Acta; 1990 Sep; 1040(2):301-7. PubMed ID: 2119231 [TBL] [Abstract][Full Text] [Related]
16. Effects of substituting asparagine for glycine-61 in flavodoxin from Desulfovibrio vulgaris (Hildenborough). Carr MC; Curley GP; Mayhew SG; Voordouw G Biochem Int; 1990; 20(6):1025-32. PubMed ID: 2369409 [TBL] [Abstract][Full Text] [Related]
17. Sequence of the flavodoxin gene from Anabaena variabilis 7120. Leonhardt KG; Straus NA Nucleic Acids Res; 1989 Jun; 17(11):4384. PubMed ID: 2500643 [No Abstract] [Full Text] [Related]
18. Role of glutamate-59 hydrogen bonded to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Glutamate-59 is not responsible for the pH dependency but contributes to the stabilization of the flavin semiquinone. Bradley LH; Swenson RP Biochemistry; 1999 Sep; 38(38):12377-86. PubMed ID: 10493805 [TBL] [Abstract][Full Text] [Related]
19. Flavodoxin-cytochrome c interactions: circular dichroism and nuclear magnetic resonance studies. Tollin G; Brown K; De Francesco R; Edmondson DE Biochemistry; 1987 Aug; 26(16):5042-8. PubMed ID: 2822104 [TBL] [Abstract][Full Text] [Related]
20. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes. Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]