BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 6910997)

  • 1. The three-dimensional organization of lens fibers in the rabbit. A scanning electron microscopic reinvestigation.
    Willekens B; Vrensen G
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1981; 216(4):275-89. PubMed ID: 6910997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The three-dimensional organization of lens fibers in the rhesus monkey.
    Willekens B; Vrensen G
    Graefes Arch Clin Exp Ophthalmol; 1982; 219(3):112-20. PubMed ID: 7173625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gap junctions are selectively associated with interlocking ball-and-sockets but not protrusions in the lens.
    Biswas SK; Lee JE; Brako L; Jiang JX; Lo WK
    Mol Vis; 2010 Nov; 16():2328-41. PubMed ID: 21139982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lens fiber organization in four avian species: a scanning electron microscopic study.
    Willekens B; Vrensen G
    Tissue Cell; 1985; 17(3):359-77. PubMed ID: 4012767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Scanning electron microscopic study of the fiber processes of the crystalline lens].
    Miura M
    Nihon Ika Daigaku Zasshi; 1991 Apr; 58(2):198-208. PubMed ID: 2066391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron microscopic observations of the crystalline lens.
    Kuszak JR; Peterson KL; Brown HG
    Microsc Res Tech; 1996 Apr; 33(6):441-79. PubMed ID: 8800752
    [No Abstract]   [Full Text] [Related]  

  • 7. [Scanning electron microscopy of the rabbit crystalline lens].
    Miura M
    Nippon Ganka Gakkai Zasshi; 1989 Nov; 93(11):1062-7. PubMed ID: 2603854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane interlocking domains in the lens.
    Kistler J; Gilbert K; Brooks HV; Jolly RD; Hopcroft DH; Bullivant S
    Invest Ophthalmol Vis Sci; 1986 Oct; 27(10):1527-34. PubMed ID: 3759369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Scanning electron microscopic study of the development of crystalline lens fiber].
    Hotta K
    Nihon Ika Daigaku Zasshi; 1995 Apr; 62(2):161-75. PubMed ID: 7775653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of animal model lens anatomy: accommodative range is related to fiber structure and organization.
    Kuszak JR; Mazurkiewicz M; Jison L; Madurski A; Ngando A; Zoltoski RK
    Vet Ophthalmol; 2006; 9(5):266-80. PubMed ID: 16939454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological differences between lens fibers in albino and pigmented rats.
    Yamada Y; Willekens B; Vrensen GF; Wegener A
    Dev Ophthalmol; 2002; 35():135-42. PubMed ID: 12061271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The surface morphology of embryonic and adult chick lens-fiber cells.
    Kuszak J; Alcala J; Maisel H
    Am J Anat; 1980 Dec; 159(4):395-410. PubMed ID: 7223675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interlocking patterns on primate lens fibers.
    Dickson DH; Crock GW
    Invest Ophthalmol; 1972 Oct; 11(10):809-15. PubMed ID: 4627255
    [No Abstract]   [Full Text] [Related]  

  • 14. [Aging changes in ocular tissues and their influences on accommodative functions].
    Nishida S
    Nippon Ganka Gakkai Zasshi; 1990 Feb; 94(2):93-119. PubMed ID: 2114735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of clathrin, AP-2 adaptor and actin cytoskeleton with developing interlocking membrane domains of lens fibre cells.
    Zhou CJ; Lo WK
    Exp Eye Res; 2003 Oct; 77(4):423-32. PubMed ID: 12957142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning electron-microscopic study of lens fibers of the pig.
    Hoyer HE
    Cell Tissue Res; 1982; 224(1):225-32. PubMed ID: 7094010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The maturation of the lens cell: a morphologic study.
    Kuwabara T
    Exp Eye Res; 1975 May; 20(5):427-43. PubMed ID: 1126408
    [No Abstract]   [Full Text] [Related]  

  • 18. Development of junctions during differentiation of lens fibers.
    Benedetti EL; Dunia I; Bloemendal H
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5073-7. PubMed ID: 4531038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tropomodulin 1 Regulation of Actin Is Required for the Formation of Large Paddle Protrusions Between Mature Lens Fiber Cells.
    Cheng C; Nowak RB; Biswas SK; Lo WK; FitzGerald PG; Fowler VM
    Invest Ophthalmol Vis Sci; 2016 Aug; 57(10):4084-99. PubMed ID: 27537257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative light and scanning electron microscopic studies of the lenses in the insectivorous bat (Pipistrellus kuhlii) and Egyptian fruit bat (Rousettus aegyptiacus).
    Aboelnour A; Gewaily MS; Noreldin AE
    Microsc Res Tech; 2024 Jul; 87(7):1436-1442. PubMed ID: 38400686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.