These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6912095)

  • 41. Regulation of melanotropin release from the pars intermedia of the amphibian Xenopus laevis: evaluation of the involvement of serotonergic, cholinergic, or adrenergic receptor mechanisms.
    Verburg-van Kemenade BM; Jenks BG; van Overbeeke AP
    Gen Comp Endocrinol; 1986 Sep; 63(3):471-80. PubMed ID: 3557070
    [TBL] [Abstract][Full Text] [Related]  

  • 42. beta-Adrenergic, CRF-ergic and dopaminergic mechanisms controlling alpha-MSH secretion in rat pars intermedia cells in primary culture.
    Meunier H; Labrie F
    Prog Neuropsychopharmacol Biol Psychiatry; 1982; 6(4-6):411-5. PubMed ID: 6298887
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detection and partial characterization of proopiomelanocortin-related end-products from the pars intermedia of the toad, Bombina orientalis.
    Dores RM; Truong T; Steveson TC
    Gen Comp Endocrinol; 1992 Aug; 87(2):197-207. PubMed ID: 1327951
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of in vivo and in vitro corticotropin-releasing hormone-stimulated release of proopiomelanocortin-derived peptides in cats.
    Willemse T; Mol JA
    Am J Vet Res; 1994 Dec; 55(12):1677-81. PubMed ID: 7887510
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence for a direct role of alpha-MSH in morphological background adaptation of the skin in Sarotherodon mossambicus.
    van Eys GJ; Peters PT
    Cell Tissue Res; 1981; 217(2):361-72. PubMed ID: 7237532
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The pars intermedia and the fetal pituitary-adrenal axis.
    Silman RE; Street C; Holland D; Chard T; Falconer J; Robinson JS
    Ciba Found Symp; 1981; 81():180-95. PubMed ID: 6268377
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Immunohistochemical detection of ACTH and MSH cells in the hypophysis of the hermaphroditic teleost, Diplodus sargus.
    Ferrandino I; Pica A; Grimaldi MC
    Eur J Histochem; 2000; 44(4):397-406. PubMed ID: 11214865
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of melanin-concentrating hormone in color change.
    Baker BI
    Ann N Y Acad Sci; 1993 May; 680():279-89. PubMed ID: 8390154
    [No Abstract]   [Full Text] [Related]  

  • 49. Central nervous system regulation of pituitary melanocyte-stimulating hormone.
    Barnawell EB
    Adv Comp Physiol Biochem; 1982; 8():53-71. PubMed ID: 6753522
    [No Abstract]   [Full Text] [Related]  

  • 50. Characteristics of receptors for dopamine in the pars intermedia of the amphibian Xenopus laevis.
    Verburg-Van Kemenade BM; Tonon MC; Jenks BG; Vaudry H
    Neuroendocrinology; 1986; 44(4):446-56. PubMed ID: 3822075
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hypothalamic control of MSH secretion in lower vertebrates.
    Goos HJ; Terlou M
    Front Horm Res; 1977; 4():51-62. PubMed ID: 26615
    [No Abstract]   [Full Text] [Related]  

  • 52. Immunocytochemical localization and ontogenic development of alpha-melanocyte-stimulating hormone (alpha-MSH) in the brain of a pleuronectiform fish, barfin flounder.
    Amano M; Takahashi A; Yamanome T; Oka Y; Amiya N; Kawauchi H; Yamamori K
    Cell Tissue Res; 2005 Apr; 320(1):127-34. PubMed ID: 15726422
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Morphology of the pars intermedia and the melanophore-stimulating cells in Xenopus laevis in relation to background adaptation.
    de Rijk EP; Jenks BG; Wendelaar Bonga SE
    Gen Comp Endocrinol; 1990 Jul; 79(1):74-82. PubMed ID: 2162308
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparative analysis of somatolactin-related immunoreactivity in the pituitaries of four neopterygian fishes and one chondrostean fish: an immunohistochemical study.
    Dores RM; Hoffman NE; Chilcutt-Ruth T; Lancha A; Brown C; Marra L; Youson J
    Gen Comp Endocrinol; 1996 Apr; 102(1):79-87. PubMed ID: 8860312
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Early development of the pituitary gland in Acipenser naccarii (Chondrostei, Acipenseriformes): an immunocytochemical study.
    Grandi G; Chicca M
    Anat Embryol (Berl); 2004 Jul; 208(4):311-21. PubMed ID: 15235908
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A role for di-acetyl alpha-melanocyte-stimulating hormone in the control of cortisol release in the teleost Oreochromis mossambicus.
    Lamers AE; Flik G; Atsma W; Wendelaar Bonga SE
    J Endocrinol; 1992 Nov; 135(2):285-92. PubMed ID: 1335471
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative immunohistochemical studies of gamma-melanocyte stimulating hormone (gamma-MSH) and adrenocorticotrophic hormone (ACTH) in the bovine and human pituitaries.
    Osamura RY; Watanabe K; Tanaka I; Nakai Y; Imura H
    Acta Endocrinol (Copenh); 1981 Apr; 96(4):458-63. PubMed ID: 6259862
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [COMPARATIVE HISTOPHYSIOLOGY OF THE PARS INTERMEDIA OF THE HYPOPHYSIS].
    LEGAIT E; LEGAIT H
    Arch Biol (Liege); 1964; 75():497-527. PubMed ID: 14276589
    [No Abstract]   [Full Text] [Related]  

  • 59. Ontogenesis of the alpha-MSH, beta-MSH and ACTH cells in the foetal hypophysis of the rat. Correlation with the growth of the adrenals and adrenocortical activity.
    Dupouy JP; Dubois MP
    Cell Tissue Res; 1975 Aug; 161(3):373-84. PubMed ID: 169996
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Recent data on the group of melanotropic and lipotropic pituitary hormones (MSH-LPH) and on the brain morphinomimetic peptides (endorphins)].
    Bertagna X; Girard F
    Ann Endocrinol (Paris); 1978; 39(3):201-13. PubMed ID: 214012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.