These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 6912382)
1. [Mechanism of codon-anticodon interaction in ribosomes. Interaction of aminoacyl-tRNA with 70S ribosomes in the absence of elongation factor EF-Tu and GTP]. Kemkhadze KSh; Odintsov VB; Makhno VI; Semenkov IuP; Kirillov SV Mol Biol (Mosk); 1981; 15(4):779-89. PubMed ID: 6912382 [TBL] [Abstract][Full Text] [Related]
2. [Binding of the yeast phenylalanine tRNA with Escherichia coli ribosomes. Effect of the removal of a modified base from the 3'-end of the anticodon on codon-anticodon interaction]. Katunin VI; Kirillov SV Mol Biol (Mosk); 1984; 18(6):1486-96. PubMed ID: 6084167 [TBL] [Abstract][Full Text] [Related]
3. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702 [TBL] [Abstract][Full Text] [Related]
4. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. Pape T; Wintermeyer W; Rodnina MV EMBO J; 1998 Dec; 17(24):7490-7. PubMed ID: 9857203 [TBL] [Abstract][Full Text] [Related]
5. [Ribosomal proteins interacting with Phe-tRNAPhe during enzymatic binding with translating ribosome before and after the release of the elongation factor EF-Tu]. Abdurashidova GG; Ovsepian VA; Chernyĭ AA; Kaminir LB; Budovskiĭ EI Mol Biol (Mosk); 1985; 19(3):800-4. PubMed ID: 3897833 [TBL] [Abstract][Full Text] [Related]
6. Quantitative study of the interaction of aminoacyl-tRNA with the a site of Escherichia coli ribosomes: equilibrium and kinetic parameters of binding in the absence of EF-Tu factor and GTP. Kemkhadze KS; Odintsov VB; Semenkov YP; Kirillov SV FEBS Lett; 1981 Mar; 125(1):10-4. PubMed ID: 7014250 [No Abstract] [Full Text] [Related]
7. Interaction of elongation factor Tu with the aminoacyl transfer ribonucleic acid dimer Phe-tRNA-Glu-tRNA. Yamane T; Miller DL; Hopfield JJ Biochemistry; 1981 Jan; 20(2):449-52. PubMed ID: 7008845 [TBL] [Abstract][Full Text] [Related]
8. Decoding at the ribosomal A site. The effect of a defined codon-anticodon mismatch upon the behavior of bound aminoacyl transfer RNA. Hornig H; Woolley P; Lührmann R J Biol Chem; 1984 May; 259(9):5632-6. PubMed ID: 6371008 [TBL] [Abstract][Full Text] [Related]
9. Aminoacyl-tRNA-elongation factor Tu-ribosome interaction leading to hydrolysis of guanosine 5'-triphosphate. Takahashi K; Ghag S; Chládek S Biochemistry; 1986 Dec; 25(25):8330-6. PubMed ID: 3545292 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of codon-anticodon interaction in ribosomes. Direct functional evidence that isolated 30S subunits contain two codon-specific binding sites for transfer RNA. Kirillov SV; Makhno VI; Semenkov YP Nucleic Acids Res; 1980 Jan; 8(1):183-96. PubMed ID: 6986612 [TBL] [Abstract][Full Text] [Related]
11. Hydrolysis of GTP on elongation factor Tu.ribosome complexes promoted by 2'(3')-O-L-phenylalanyladenosine. Campuzano S; Modolell J Proc Natl Acad Sci U S A; 1980 Feb; 77(2):905-9. PubMed ID: 6987671 [TBL] [Abstract][Full Text] [Related]
12. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA. Navratil T; Spremulli LL Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005 [TBL] [Abstract][Full Text] [Related]
13. Affinities of tRNA binding sites of ribosomes from Escherichia coli. Lill R; Robertson JM; Wintermeyer W Biochemistry; 1986 Jun; 25(11):3245-55. PubMed ID: 3524675 [TBL] [Abstract][Full Text] [Related]
14. Enacyloxin IIa, an inhibitor of protein biosynthesis that acts on elongation factor Tu and the ribosome. Cetin R; Krab IM; Anborgh PH; Cool RH; Watanabe T; Sugiyama T; Izaki K; Parmeggiani A EMBO J; 1996 May; 15(10):2604-11. PubMed ID: 8665868 [TBL] [Abstract][Full Text] [Related]
15. [The effect of modification of nucleotide-37 on the interaction of aminoacyl-tRNA with the A-site of the 70S ribosome]. Soboleva NG; Makhno VI; Konevega AL; Semenkov IuP; Katunin VI Mol Biol (Mosk); 2003; 37(1):121-7. PubMed ID: 12624954 [TBL] [Abstract][Full Text] [Related]
16. Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. Rodnina MV; Fricke R; Kuhn L; Wintermeyer W EMBO J; 1995 Jun; 14(11):2613-9. PubMed ID: 7781613 [TBL] [Abstract][Full Text] [Related]
17. [Interaction of deacylated phenylalanyl tRNA from yeasts with Escherichia coli ribosomes. The role of the modified nucleotide in codon-anticodon interaction]. Katunin VI; Soboleva NG; Makhno VI; Sedel'nikova EA; Zhenodarova SM; Kirillov SV Mol Biol (Mosk); 1994; 28(1):66-75. PubMed ID: 8145756 [TBL] [Abstract][Full Text] [Related]
18. An A to U transversion at position 1067 of 23 S rRNA from Escherichia coli impairs EF-Tu and EF-G function. Saarma U; Remme J; Ehrenberg M; Bilgin N J Mol Biol; 1997 Sep; 272(3):327-35. PubMed ID: 9325093 [TBL] [Abstract][Full Text] [Related]
19. Codon-dependent rearrangement of the three-dimensional structure of phenylalanine tRNA, exposing the T-psi-C-G sequence for binding to the 50S ribosomal subunit. Schwarz U; Menzel HM; Gassen HG Biochemistry; 1976 Jun; 15(11):2484-90. PubMed ID: 776221 [TBL] [Abstract][Full Text] [Related]
20. [Stoichiometry of GTP hydrolysis during peptide synthesis on the ribosome. GTP hydrolysis uncoupled with ribosomal peptide synthesis and dependent on preparation of elongation factor T]. Smailov SK; Kakhniashvili DG; Gavrilova LP Biokhimiia; 1982 Oct; 47(10):1747-51. PubMed ID: 6129003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]