These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 6914155)
1. Importance of secondary enzyme-substrate interactions in human cathepsin G and chymotrypsin II catalysis. Boudier C; Jung ML; Stambolieva N; Bieth JG Arch Biochem Biophys; 1981 Sep; 210(2):790-3. PubMed ID: 6914155 [No Abstract] [Full Text] [Related]
2. Specificity and reactivity of human leukocyte elastase, porcine pancreatic elastase, human granulocyte cathepsin G, and bovine pancreatic chymotrypsin with arylsulfonyl fluorides. Discovery of a new series of potent and specific irreversible elastase inhibitors. Yoshimura T; Barker LN; Powers JC J Biol Chem; 1982 May; 257(9):5077-84. PubMed ID: 6917853 [TBL] [Abstract][Full Text] [Related]
3. Leukoproteinases and pulmonary emphysema: cathepsin G and other chymotrypsin-like proteinases enhance the elastolytic activity of elastase on lung elastin. Boudier C; Laurent P; Bieth JG Adv Exp Med Biol; 1984; 167():313-7. PubMed ID: 6369910 [No Abstract] [Full Text] [Related]
4. Active site mapping of the serine proteases human leukocyte elastase, cathepsin G, porcine pancreatic elastase, rat mast cell proteases I and II. Bovine chymotrypsin A alpha, and Staphylococcus aureus protease V-8 using tripeptide thiobenzyl ester substrates. Harper JW; Cook RR; Roberts CJ; McLaughlin BJ; Powers JC Biochemistry; 1984 Jun; 23(13):2995-3002. PubMed ID: 6380580 [TBL] [Abstract][Full Text] [Related]
5. The serpin MNEI inhibits elastase-like and chymotrypsin-like serine proteases through efficient reactions at two active sites. Cooley J; Takayama TK; Shapiro SD; Schechter NM; Remold-O'Donnell E Biochemistry; 2001 Dec; 40(51):15762-70. PubMed ID: 11747453 [TBL] [Abstract][Full Text] [Related]
6. Interactions of serine proteinases with pNiXa, a serpin of Xenopus oocytes and embryos. Kotyza J; Varghese AH; Korza G; Sunderman FW Biochim Biophys Acta; 1998 Feb; 1382(2):266-76. PubMed ID: 9540798 [TBL] [Abstract][Full Text] [Related]
7. Factors influencing protease levels in animal cells in vitro. O'Leary R; Gregory B; Carey B; McGlinchey E; O'Toole A; Clynes M; O'Connor B Biochem Soc Trans; 1991 Feb; 19(1):26S. PubMed ID: 2037163 [No Abstract] [Full Text] [Related]
8. Oxidation of alpha-1-proteinase inhibitor: significance for pathobiology. Travis J; Beatty K; Matheson N Adv Exp Med Biol; 1984; 167():89-95. PubMed ID: 6231839 [No Abstract] [Full Text] [Related]
9. [High molecular weight soy isoinhibitors of the Bowman-Birk type. Isolation, characteristics, and kinetics of interaction with proteinases]. Gladysheva IP; Sharafutdinov TZ; Larionova NI Bioorg Khim; 1994 Mar; 20(3):281-9. PubMed ID: 8166755 [TBL] [Abstract][Full Text] [Related]
10. Substrate specificity of two chymotrypsin-like proteases from rat mast cells. Studies with peptide 4-nitroanilides and comparison with cathepsin G. Yoshida N; Everitt MT; Neurath H; Woodbury RG; Powers JC Biochemistry; 1980 Dec; 19(25):5799-804. PubMed ID: 7006692 [No Abstract] [Full Text] [Related]
12. Amino acids and peptides. XXX. Synthesis of eglin c (41-49) and eglin c (60-63) and examination of their inhibitory activity towards human leukocyte elastase, cathepsin G, porcine pancreatic elastase and alpha-chymotrypsin. Tsuboi S; Takeda M; Okada Y; Nagamatsu Y; Yamamoto J Chem Pharm Bull (Tokyo); 1991 Jan; 39(1):184-6. PubMed ID: 2049802 [TBL] [Abstract][Full Text] [Related]
13. Specific inhibition of human granulocyte elastase with peptide aldehydes. Cs-Szabó G; Széll E; Elödi P FEBS Lett; 1986 Jan; 195(1-2):265-8. PubMed ID: 3510904 [TBL] [Abstract][Full Text] [Related]
14. Similarities between human and rat leukocyte elastase and cathepsin G. Virca GD; Metz G; Schnebli HP Eur J Biochem; 1984 Oct; 144(1):1-9. PubMed ID: 6566611 [TBL] [Abstract][Full Text] [Related]
15. Specificity of porcine pancreatic elastase, human leukocyte elastase and cathepsin G. Inhibition with peptide chloromethyl ketones. Powers JC; Gupton BF; Harley AD; Nishino N; Whitley RJ Biochim Biophys Acta; 1977 Nov; 485(1):156-66. PubMed ID: 562189 [No Abstract] [Full Text] [Related]
16. Inhibition of human leukocyte elastase, cathepsin G, chymotrypsin A alpha, and porcine pancreatic elastase with substituted isobenzofuranones and benzopyrandiones. Hemmi K; Harper JW; Powers JC Biochemistry; 1985 Apr; 24(8):1841-8. PubMed ID: 3848330 [TBL] [Abstract][Full Text] [Related]
17. Studies on reactivity of human leukocyte elastase, cathepsin G, and porcine pancreatic elastase toward peptides including sequences related to the reactive site of alpha 1-protease inhibitor (alpha 1-antitrypsin). McRae B; Nakajima K; Travis J; Powers JC Biochemistry; 1980 Aug; 19(17):3973-8. PubMed ID: 6967733 [No Abstract] [Full Text] [Related]
18. Biochemical characterization of alpha-ketooxadiazole inhibitors of elastases. Wieczorek M; Gyorkos A; Spruce LW; Ettinger A; Ross SE; Kroona HS; Burgos-Lepley CE; Bratton LD; Drennan TS; Garnert DL; Von Burg G; Pilkington CG; Cheronis JC Arch Biochem Biophys; 1999 Jul; 367(2):193-201. PubMed ID: 10395735 [TBL] [Abstract][Full Text] [Related]
19. 6-Acylamino-2-1[(ethylsulfonyl)oxy]-1H-isoindole-1,3-diones mechanism-based inhibitors of human leukocyte elastase and cathepsin G: effect of chirality in the 6-acylamino substituent on inhibitory potency and selectivity. Vagnoni LM; Gronostaj M; Kerrigan JE Bioorg Med Chem; 2001 Mar; 9(3):637-45. PubMed ID: 11310598 [TBL] [Abstract][Full Text] [Related]
20. Stimulation of the elastolytic activity of leukocyte elastase by leukocyte cathepsin G. Boudier C; Holle C; Bieth JG J Biol Chem; 1981 Oct; 256(20):10256-8. PubMed ID: 6912862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]