These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 692388)
41. NMR observations of 13C-enriched coenzyme B12 bound to the ribonucleotide reductase from Lactobacillus leichmannii. Brown KL; Li J; Zou X Inorg Chem; 2006 Nov; 45(23):9172-4. PubMed ID: 17083212 [TBL] [Abstract][Full Text] [Related]
42. Thioredoxin from Lactobacillus leichmannii and its role as hydrogen donor for ribonucleoside triphosphate reductase. Orr MD; Vitols E Biochem Biophys Res Commun; 1966 Oct; 25(1):109-15. PubMed ID: 4382007 [No Abstract] [Full Text] [Related]
43. Studies on the catalysis of carbon-cobalt bond homolysis by ribonucleoside triphosphate reductase: evidence for concerted carbon-cobalt bond homolysis and thiyl radical formation. Licht SS; Booker S; Stubbe J Biochemistry; 1999 Jan; 38(4):1221-33. PubMed ID: 9930982 [TBL] [Abstract][Full Text] [Related]
44. The molecular weight of Ehrlich tumor cell ribonucleotide reductase and its subunits: effector-induced changes. Cory JG; Fleischer AE Arch Biochem Biophys; 1982 Sep; 217(2):546-51. PubMed ID: 6753748 [No Abstract] [Full Text] [Related]
45. Reduction of ribonucleotides. Thelander L; Reichard P Annu Rev Biochem; 1979; 48():133-58. PubMed ID: 382982 [No Abstract] [Full Text] [Related]
46. Cobamides and ribonucleotide reduction. XII. The electron paramagnetic resonance spectrum of "active coenzyme B12". Orme-Johnson WH; Beinert H; Blakley RL J Biol Chem; 1974 Apr; 249(8):2338-43. PubMed ID: 4362676 [No Abstract] [Full Text] [Related]
47. A monomeric, allosteric enzyme with a single polypeptide chain. Ribonucleotide reductase of Lactobacillus leichmannii. Panagou D; Orr MD; Dunstone JR; Blakley RL Biochemistry; 1972 Jun; 11(12):2378-88. PubMed ID: 5028501 [No Abstract] [Full Text] [Related]
48. Effector regulation in a monomeric enzyme. Ludwig ML; Matthews RG Nat Struct Biol; 2002 Apr; 9(4):236-8. PubMed ID: 11914727 [No Abstract] [Full Text] [Related]
49. Hydrogen-donor specificity of ribonucleoside triphosphate reductase from Lactobacillus leichmannii. Vitols E; Blakley RL Biochem Biophys Res Commun; 1965 Dec; 21(5):466-72. PubMed ID: 5326296 [No Abstract] [Full Text] [Related]
50. From RNA to DNA, why so many ribonucleotide reductases? Reichard P Science; 1993 Jun; 260(5115):1773-7. PubMed ID: 8511586 [TBL] [Abstract][Full Text] [Related]
51. Separation of a subunit necessary for CDP reductase from other ribonucleotide reductase activities of regenerating rat liver. Youdale T; MacManus JP Biochem Biophys Res Commun; 1979 Jul; 89(2):403-9. PubMed ID: 486170 [No Abstract] [Full Text] [Related]
52. Substrate specificity of human ribonucleotide reductase from Molt-4F cells. Chang CH; Cheng YC Cancer Res; 1979 Dec; 39(12):5081-6. PubMed ID: 498135 [TBL] [Abstract][Full Text] [Related]
53. Ribonucleotide reductase from regenerating rat liver. II. Substrate phosphorylation level and effect of deoxyadenosine triphosphate. Larsson A Biochim Biophys Acta; 1973 Nov; 324(4):447-51. PubMed ID: 4543472 [No Abstract] [Full Text] [Related]
54. Inhibition of bacterial ribonucleotide reductases by arabinonucleotides. Ludwig W; Follmann H Eur J Biochem; 1978 Nov; 91(2):493-9. PubMed ID: 365526 [No Abstract] [Full Text] [Related]
55. Synthesis and biological activity of a profluorescent analogue of coenzyme B12. Rosendahl MS; Omann GM; Leonard NJ Proc Natl Acad Sci U S A; 1982 Jun; 79(11):3480-4. PubMed ID: 7048307 [TBL] [Abstract][Full Text] [Related]
56. Investigating the intermediates in the reaction of ribonucleoside triphosphate reductase from Lactobacillus leichmannii: An application of HF EPR-RFQ technology. Manzerova J; Krymov V; Gerfen GJ J Magn Reson; 2011 Dec; 213(1):32-45. PubMed ID: 21944735 [TBL] [Abstract][Full Text] [Related]