These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 692817)

  • 1. The effects of intravenous fentanyl, morphine and naloxone on nociceptive responses of neurones in the rat caudal medulla.
    Mayer ML; Hill RG
    Neuropharmacology; 1978 Jul; 17(7):533-9. PubMed ID: 692817
    [No Abstract]   [Full Text] [Related]  

  • 2. Excitation by morphine and enkephalin of single neurons of nucleus reticularis paragigantocellularis in the rat: a probable mechanism of analgesic action of opioids.
    Satoh M; Akaike A; Takagi H
    Brain Res; 1979 Jun; 169(2):406-10. PubMed ID: 221078
    [No Abstract]   [Full Text] [Related]  

  • 3. Naloxone reversible inhibition of reticular neurones in the rat caudal medulla produced by electrical stimulation of the periaqueductal grey matter.
    Hill RG; Morris R; Sofroniew MV
    Pain; 1983 Mar; 15(3):249-63. PubMed ID: 6304597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periaqueductal grey matter stimulation produces naloxone sensitive inhibition of reticular neurones in rat caudal medulla.
    Hill RG; Morris R; Sofroniew MV
    Life Sci; 1982 Nov 15-22; 31(20-21):2323-5. PubMed ID: 7162348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of morphine and naloxone on the responses to noxious stimulation of neurones in the nucleus reticularis paragigantocellularis.
    Azami J; Wright DM; Roberts MH
    Neuropharmacology; 1981 Sep; 20(9):869-76. PubMed ID: 7290359
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of focal electrical stimulation and morphine microinjection in the periaqueductal gray of the rat mesencephalon on neuronal activity in the medullary reticular formation.
    Mohrland JS; Gebhart GF
    Brain Res; 1980 Nov; 201(1):23-37. PubMed ID: 6251951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of systemic morphine on neurons in the lateral reticular nucleus area of the rat.
    Liu RH; Tang JS; Hou ZL
    Brain Res Bull; 1993; 32(2):179-84. PubMed ID: 8348342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atypical on-, off- and neutral cells in the rostral ventromedial medulla oblongata in rat.
    Schnell C; Ulucan C; Ellrich J
    Exp Brain Res; 2002 Jul; 145(1):64-75. PubMed ID: 12070746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two distinct unit activity responses to morphine in the rostral ventromedial medulla of awake rats.
    McGaraughty S; Reinis S; Tsoukatos J
    Brain Res; 1993 Feb; 604(1-2):331-3. PubMed ID: 8457860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ionophoretic application of morphine and naloxone on responses of nucleus reticularis paragigantocellularis neurones to noxious stimulation in the rat [proceedings].
    Azami J; Roberts MH; Wright DM
    J Physiol; 1979 Aug; 293():63P-64P. PubMed ID: 501643
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of systemic morphine upon A delta- and C-fibre evoked activities of subnucleus reticularis dorsalis neurones in the rat medulla.
    Bing Z; Villanueva L; Le Bars D
    Eur J Pharmacol; 1989 May; 164(1):85-92. PubMed ID: 2753082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of spinal analgesia on visceral nociceptive neurons in caudal medulla of the rat.
    Ness TJ; Piper JG; Follett KA
    Anesth Analg; 1999 Sep; 89(3):721-6. PubMed ID: 10475313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of spinal nociceptive transmission from the midbrain, pons and medulla in the rat: activation of descending inhibition by morphine, glutamate and electrical stimulation.
    Jones SL; Gebhart GF
    Brain Res; 1988 Sep; 460(2):281-96. PubMed ID: 2852046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endogenous opioid-mediated inhibition of putative pain-modulating neurons in rat rostral ventromedial medulla.
    Pan ZZ; Fields HL
    Neuroscience; 1996 Oct; 74(3):855-62. PubMed ID: 8884781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systemic morphine-induced release of serotonin in the rostroventral medulla is not mimicked by morphine microinjection into the periaqueductal gray.
    Taylor BK; Basbaum AI
    J Neurochem; 2003 Sep; 86(5):1129-41. PubMed ID: 12911621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of morphine tolerance and dependence in the nucleus paragigantocellularis neurons.
    Saiepour MH; Semnanian S; Fathollahi Y
    Eur J Pharmacol; 2001 Jan; 411(1-2):85-92. PubMed ID: 11137862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circuitry linking opioid-sensitive nociceptive modulatory systems in periaqueductal gray and spinal cord with rostral ventromedial medulla.
    Morgan MM; Heinricher MM; Fields HL
    Neuroscience; 1992; 47(4):863-71. PubMed ID: 1579215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of medullary raphe neurons to peripheral stimulation and to systemic opiates.
    Anderson SD; Basbaum AI; Fields HL
    Brain Res; 1977 Mar; 123(2):363-8. PubMed ID: 843930
    [No Abstract]   [Full Text] [Related]  

  • 19. [Effects of NRGC-lesion on the rates of the development of morphine tolerance and dependence in rats].
    Kishioka S; Iguchi Y; Ozaki M; Yamamoto H
    Nihon Yakurigaku Zasshi; 1985 Jun; 85(6):467-80. PubMed ID: 4040881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct and indirect actions of morphine on medullary neurons that modulate nociception.
    Heinricher MM; Morgan MM; Fields HL
    Neuroscience; 1992; 48(3):533-43. PubMed ID: 1603332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.