These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 692832)

  • 1. Analgesia induced by microinjection of morphine into, and electrical stimulation of, the nucleus reticularis paragigantocellularis of rat medulla oblongata.
    Akaike A; Shibata T; Satoh M; Takagi H
    Neuropharmacology; 1978 Sep; 17(9):775-8. PubMed ID: 692832
    [No Abstract]   [Full Text] [Related]  

  • 2. The nucleus reticularis gigantocellularis of the medulla oblongata is a highly sensitive site in the production of morphine analgesia in the rat.
    Takagi H; Satoh M; Akaike A; Shibata T; Kuraishi Y
    Eur J Pharmacol; 1977 Sep; 45(1):91-2. PubMed ID: 891624
    [No Abstract]   [Full Text] [Related]  

  • 3. [Effect of destruction of nucleus reticularis gigantocellularis of rat medulla oblongata on morphine analgesia].
    Kishioka S; Iguchi Y; Ozaki M; Yamamoto H
    Nihon Yakurigaku Zasshi; 1983 Dec; 82(6):475-84. PubMed ID: 6667915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of focal electrical stimulation and morphine microinjection in the periaqueductal gray of the rat mesencephalon on neuronal activity in the medullary reticular formation.
    Mohrland JS; Gebhart GF
    Brain Res; 1980 Nov; 201(1):23-37. PubMed ID: 6251951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microinjection of morphine into nucleus reticularis paragigantocellularis of the rat suppresses spontaneous activity of nucleus raphe magnus neurons.
    Heinricher MM; Rosenfeld JP
    Brain Res; 1983 Aug; 272(2):382-6. PubMed ID: 6616214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microinjection of morphine into nucleus reticularis paragigantocellularis of the rat: suppression of noxious-evoked activity of nucleus raphe magnus neurons.
    Heinricher MM; Rosenfeld JP
    Brain Res; 1985 Dec; 359(1-2):388-91. PubMed ID: 4075159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of morphine tolerance and dependence in the nucleus paragigantocellularis neurons.
    Saiepour MH; Semnanian S; Fathollahi Y
    Eur J Pharmacol; 2001 Jan; 411(1-2):85-92. PubMed ID: 11137862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of descending fibers from the rostral ventromedial medulla in opioid analgesia in rats.
    Gilbert AK; Franklin KB
    Eur J Pharmacol; 2002 Aug; 449(1-2):75-84. PubMed ID: 12163109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of spinal nociceptive transmission from the midbrain, pons and medulla in the rat: activation of descending inhibition by morphine, glutamate and electrical stimulation.
    Jones SL; Gebhart GF
    Brain Res; 1988 Sep; 460(2):281-96. PubMed ID: 2852046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of stimulation-produced analgesia from the nucleus tractus solitarius in the rat.
    Morgan MM; Sohn JH; Lohof AM; Ben-Eliyahu S; Liebeskind JC
    Brain Res; 1989 May; 486(1):175-80. PubMed ID: 2566361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lesions in nucleus reticularis gigantocellularis: effect on the antinociception produced by micro-injection of morphine and focal electrical stimulation in the periaqueductal gray matter.
    Mohrland JS; McManus DQ; Gebhart GF
    Brain Res; 1982 Jan; 231(1):143-52. PubMed ID: 6275945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The contribution of the rostral ventromedial medulla to the antinociceptive effects of systemic morphine in restrained and unrestrained rats.
    Mitchell JM; Lowe D; Fields HL
    Neuroscience; 1998 Nov; 87(1):123-33. PubMed ID: 9722146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of muscarinic receptor subtypes in the rostral ventrolateral medulla and effects on morphine-induced antinociception in rats.
    Abe K; Taguchi K; Kato M; Utsunomiya I; Chikuma T; Hojyo H; Miyatake T
    Eur J Pharmacol; 2003 Apr; 465(3):237-49. PubMed ID: 12681435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrolytic lesion of the nucleus raphe magnus reduced the antinociceptive effects of bilateral morphine microinjected into the nucleus cuneiformis in rats.
    Haghparast A; Ordikhani-Seyedlar M; Ziaei M
    Neurosci Lett; 2008 Jun; 438(3):351-5. PubMed ID: 18486337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of NRGC-lesion on the rates of the development of morphine tolerance and dependence in rats].
    Kishioka S; Iguchi Y; Ozaki M; Yamamoto H
    Nihon Yakurigaku Zasshi; 1985 Jun; 85(6):467-80. PubMed ID: 4040881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of depletion of spinal cord norepinephrine on morphine-induced antinociception.
    Pang IH; Vasko MR
    Brain Res; 1986 Apr; 371(1):171-6. PubMed ID: 3754781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of mesencephalic morphine analgesia by methysergide in the medial ventral medulla of rats.
    Kiefel JM; Cooper ML; Bodnar RJ
    Physiol Behav; 1992 Jan; 51(1):201-5. PubMed ID: 1311108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caffeine increases paragigantocellularis neuronal firing rate and induces withdrawal signs in morphine-dependent rats.
    Khalili M; Semnanian S; Fathollahi Y
    Eur J Pharmacol; 2001 Feb; 412(3):239-45. PubMed ID: 11166287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Naloxone-reversible analgesia produced by microstimulation in the rat medulla.
    Zorman G; Hentall ID; Adams JE; Fields HL
    Brain Res; 1981 Aug; 219(1):137-48. PubMed ID: 7260623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the effects of ventral medullary lesions on systemic and microinjection morphine analgesia.
    Young EG; Watkins LR; Mayer DJ
    Brain Res; 1984 Jan; 290(1):119-29. PubMed ID: 6692127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.