These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 6928671)

  • 1. Clumping of acetylcholinesterase activity in the developing striatum of the human fetus and young infant.
    Graybiel AM; Ragsdale CW
    Proc Natl Acad Sci U S A; 1980 Feb; 77(2):1214-8. PubMed ID: 6928671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct demonstration of a correspondence between the dopamine islands and acetylcholinesterase patches in the developing striatum.
    Graybiel AM; Pickel VM; Joh TH; Reis DJ; Ragsdale CW
    Proc Natl Acad Sci U S A; 1981 Sep; 78(9):5871-5. PubMed ID: 6117860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postnatal development of acetylcholinesterase in the caudate-putamen nucleus and substantia nigra of rats.
    Butcher LL; Hodge GK
    Brain Res; 1976 Apr; 106(2):223-40. PubMed ID: 1276870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ontogeny of the striatal neurons expressing neuropeptide genes in the human fetus and neonate.
    Brana C; Charron G; Aubert I; Carles D; Martin-Negrier ML; Trouette H; Fournier MC; Vital C; Bloch B
    J Comp Neurol; 1995 Sep; 360(3):488-505. PubMed ID: 8543654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Cholinesterase activity in the human striatum with special consideration of the terminal islands].
    Hartz-Schütt CG; Mai JK
    J Hirnforsch; 1991; 32(3):317-42. PubMed ID: 1779133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compartmentalization of NADPH-diaphorase staining in the developing human striatum.
    Sajin B; Sestan N; Dmitrović B
    Neurosci Lett; 1992 Jun; 140(1):117-20. PubMed ID: 1407689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of muscarinic cholinergic binding in the striatum and their relation to dopamine islands and striosomes.
    Nastuk MA; Graybiel AM
    J Comp Neurol; 1985 Jul; 237(2):176-94. PubMed ID: 4031121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A note upon the striatal distribution of cytochrome oxidase activity in the rat and in the cat.
    Giménez-Amaya JM
    Acta Anat (Basel); 1991; 142(2):158-64. PubMed ID: 1664166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetylcholinesterase in the substantia nigra and caudate-putamen of the rat: properties and localization in dopaminergic neurons.
    Lehmann J; Fibiger HC
    J Neurochem; 1978 Mar; 30(3):615-24. PubMed ID: 681936
    [No Abstract]   [Full Text] [Related]  

  • 10. Spatiotemporal expression gradients of the carbohydrate antigen (CD15) (Lewis X) during development of the human basal ganglia.
    Mai JK; Krajewski S; Reifenberger G; Genderski B; Lensing-Höhn S; Ashwell KW
    Neuroscience; 1999; 88(3):847-58. PubMed ID: 10363822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetylcholinesterase-containing neurons in cat neostriatum: a morphological and quantitative analysis.
    Parent A; O'Reilly-Fromentin J; Boucher R
    Neurosci Lett; 1980 Dec; 20(3):271-6. PubMed ID: 7443076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correspondence between the dopamine islands and striosomes of the mammalian striatum.
    Graybiel AM
    Neuroscience; 1984 Dec; 13(4):1157-87. PubMed ID: 6152035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontogeny of cholecystokinin receptors in the human striatum.
    Schiffmann SN; Goldman S; Heyman P; De Vuyst M; De Roy G; Vanderhaeghen JJ
    Neurosci Lett; 1992 Jul; 141(1):39-42. PubMed ID: 1380680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new enzyme marker for striatal compartmentalization: NADPH diaphorase activity in the caudate nucleus and putamen of the cat.
    Sandell JH; Graybiel AM; Chesselet MF
    J Comp Neurol; 1986 Jan; 243(3):326-34. PubMed ID: 2419368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous development of calbindin-D28K expression in the striatal matrix.
    Liu FC; Graybiel AM
    J Comp Neurol; 1992 Jun; 320(3):304-22. PubMed ID: 1351896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of developmental plasticity in the corticostriatal system.
    Vuksić M; Rados M; Kostović I
    Coll Antropol; 2008 Jan; 32 Suppl 1():155-9. PubMed ID: 18405076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining.
    Graybiel AM; Ragsdale CW
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5723-6. PubMed ID: 103101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changing distribution patterns of synaptophysin-immunoreactive structures in the human dorsal striatum of the fetal brain.
    Ulfig N; Setzer M; Neudörfer F; Saretzki U
    Anat Rec; 2000 Feb; 258(2):198-209. PubMed ID: 10645967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptogenesis in the fetal corpus striatum, globus pallidus, and substantia nigra: correlations with striosomes of Graybiel and dyskinesias in premature infants.
    Sarnat HB; Auer RN; Flores-Sarnat L
    J Child Neurol; 2013 Jan; 28(1):60-9. PubMed ID: 22532552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prenatal development of nucleus basalis complex and related fiber systems in man: a histochemical study.
    Kostović I
    Neuroscience; 1986 Apr; 17(4):1047-77. PubMed ID: 3714039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.