These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 6928689)

  • 21. The importance of the second hairpin loop of cystatin C for proteinase binding. Characterization of the interaction of Trp-106 variants of the inhibitor with cysteine proteinases.
    Björk I; Brieditis I; Raub-Segall E; Pol E; Håkansson K; Abrahamson M
    Biochemistry; 1996 Aug; 35(33):10720-6. PubMed ID: 8718861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence of tryptophan dipeptides: correlations with the rotamer model.
    Chen RF; Knutson JR; Ziffer H; Porter D
    Biochemistry; 1991 May; 30(21):5184-95. PubMed ID: 2036384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence by chemical modification that tryptophan-104 of the cysteine-proteinase inhibitor chicken cystatin is located in or near the proteinase-binding site.
    Nycander M; Björk I
    Biochem J; 1990 Oct; 271(1):281-4. PubMed ID: 2222419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Fluorescence spectra analysis of papain structure treated by dynamic high pressure microfluidization in low pressure ranges].
    Liu W; Xie MY; Zhong YJ; Liu CM; Guan B; Wang Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):387-90. PubMed ID: 20384130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding.
    Yuan T; Weljie AM; Vogel HJ
    Biochemistry; 1998 Mar; 37(9):3187-95. PubMed ID: 9485473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environments of the four tryptophans in the extracellular domain of human tissue factor: comparison of results from absorption and fluorescence difference spectra of tryptophan replacement mutants with the crystal structure of the wild-type protein.
    Hasselbacher CA; Rusinova E; Waxman E; Rusinova R; Kohanski RA; Lam W; Guha A; Du J; Lin TC; Polikarpov I
    Biophys J; 1995 Jul; 69(1):20-9. PubMed ID: 7669897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical Modification of the Tryptophan Residue in a Recombinant Ca2+-ATPase N-domain for Studying Tryptophan-ANS FRET.
    Sampedro JG; Cataño Y
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34694285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence energy transfer between ligand binding sites on aspartate transcarbamylase.
    Matsumoto S; Hammes GG
    Biochemistry; 1975 Jan; 14(2):214-24. PubMed ID: 1091284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping the suramin-binding sites of human neutrophil elastase: investigation by fluorescence resonance energy transfer and molecular modeling.
    Mély Y; Cadène M; Sylte I; Bieth JG
    Biochemistry; 1997 Dec; 36(50):15624-31. PubMed ID: 9398290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A re-appraisal of the structural basis of stereochemical recognition in papain. Insensitivity of binding-site-catalytic-site signalling to P2-chirality in a time-dependent inhibition.
    Templeton W; Kowlessur D; Thomas EW; Topham CM; Brocklehurst K
    Biochem J; 1990 Mar; 266(3):645-51. PubMed ID: 2327953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectral and metal-binding properties of three single-point tryptophan mutants of the human transferrin N-lobe.
    He QY; Mason AB; Lyons BA; Tam BM; Nguyen V; MacGillivray RT; Woodworth RC
    Biochem J; 2001 Mar; 354(Pt 2):423-9. PubMed ID: 11171122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unraveling the mechanisms of tryptophan fluorescence quenching in the triosephosphate isomerase from Giardia lamblia.
    Hernández-Alcántara G; Rodríguez-Romero A; Reyes-Vivas H; Peon J; Cabrera N; Ortiz C; Enríquez-Flores S; De la Mora-De la Mora I; López-Velázquez G
    Biochim Biophys Acta; 2008 Nov; 1784(11):1493-500. PubMed ID: 18620084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resolution of fluorescence intensity decays of the two tryptophan residues in glutamine-binding protein from Escherichia coli using single tryptophan mutants.
    Axelsen PH; Bajzer Z; Prendergast FG; Cottam PF; Ho C
    Biophys J; 1991 Sep; 60(3):650-9. PubMed ID: 1932553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of the efficient tryptophan fluorescence quenching in human gammaD-crystallin studied by time-resolved fluorescence.
    Chen J; Toptygin D; Brand L; King J
    Biochemistry; 2008 Oct; 47(40):10705-21. PubMed ID: 18795792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tryptophan fluorescence of the lux-specific Vibrio harveyi acyl-ACP thioesterase and its tryptophan mutants: structural properties and ligand-induced conformational change.
    Li J; Szittner R; Meighen EA
    Biochemistry; 1998 Nov; 37(46):16130-8. PubMed ID: 9819205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence of tryptophan residues in firefly luciferases and enzyme--substrate complexes.
    Chudinova EA; Dementieva EI; Brovko LY; Savitskii AP; Ugarova NN
    Biochemistry (Mosc); 1999 Oct; 64(10):1097-103. PubMed ID: 10561553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescence based structural analysis of tryptophan analogue-AMP formation in single tryptophan mutants of Bacillus stearothermophilus tryptophanyl-tRNA synthetase.
    Acchione M; Guillemette JG; Twine SM; Hogue CW; Rajendran B; Szabo AG
    Biochemistry; 2003 Dec; 42(50):14994-5002. PubMed ID: 14674776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photophysics of tryptophan fluorescence: link with the catalytic strategy of the citrate synthase from Thermoplasma acidophilum.
    Kurz LC; Fite B; Jean J; Park J; Erpelding T; Callis P
    Biochemistry; 2005 Feb; 44(5):1394-413. PubMed ID: 15683225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the excited-state energy transfer between tryptophan residues in proteins: the case of penicillin acylase.
    Ercelen S; Kazan D; Erarslan A; Demchenko AP
    Biophys Chem; 2001 May; 90(3):203-17. PubMed ID: 11407639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.